Spaces:
Build error
Build error
File size: 4,893 Bytes
87d7283 4da2434 87d7283 cfdd4c7 87d7283 4da2434 87d7283 4da2434 87d7283 4da2434 87d7283 4da2434 87d7283 4da2434 87d7283 4da2434 87d7283 2d0b5a3 87d7283 30f9bc3 87d7283 4da2434 87d7283 4da2434 87d7283 4da2434 87d7283 4da2434 87d7283 4da2434 87d7283 4da2434 87d7283 4da2434 87d7283 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import os
os.system('cd TimeSformer;'
'pip install .; cd ..')
os.system('ls -l')
os.system('pwd')
import os, sys
sys.path.append("/home/user/app/TimeSformer/")
import torch
from torchvision import transforms
from transformers import AutoTokenizer
from PIL import Image
import json
import os
from torchvision import transforms
from models.epalm import ePALM
import os
from transformers import AutoTokenizer
# import ruamel_yaml as yaml
from ruamel.yaml import YAML
import torch
import gradio as gr
yaml=YAML(typ='safe')
use_cuda = torch.cuda.is_available()
device = torch.device('cuda') if use_cuda else torch.device('cpu')
device_type = 'cuda' if use_cuda else 'cpu'
## Load model
### Captioning
config = 'configs/video/ePALM_video_caption_msrvtt.yaml'
config = yaml.load(open(config, 'r'))
text_model = 'facebook/opt-2.7b'
vision_model_name = 'timesformer'
start_layer_idx = 19
end_layer_idx = 31
low_cpu = True
MODEL = ePALM(opt_model_name=text_model,
vision_model_name=vision_model_name,
use_vis_prefix=True,
start_layer_idx=start_layer_idx,
end_layer_idx=end_layer_idx,
return_hidden_state_vision=True,
config=config,
low_cpu=low_cpu
)
print("Model Built")
MODEL.to(device)
checkpoint_path = 'checkpoints/float32/ePALM_video_caption_msrvtt/checkpoint_best.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu')
state_dict = checkpoint['model']
msg = MODEL.load_state_dict(state_dict,strict=False)
MODEL.bfloat16()
## Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(text_model, use_fast=False)
eos_token = tokenizer.eos_token
pad_token = tokenizer.pad_token
special_answer_token = '</a>'
special_tokens_dict = {'additional_special_tokens': [special_answer_token]}
tokenizer.add_special_tokens(special_tokens_dict)
image_size = 224
normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
type_transform = transforms.Lambda(lambda x: x.float().div(255.0))
test_transform = transforms.Compose([
transforms.Resize((image_size,image_size),interpolation=Image.BICUBIC),
type_transform,
normalize,
])
from dataset.video_utils import VIDEO_READER_FUNCS
video_reader = VIDEO_READER_FUNCS['decord']
def read_video(path, num_frames=16):
frames, frame_indices, video_duration = video_reader(
path, num_frames, 'rand', max_num_frames=-1
)
video = test_transform(frames)
return video.permute(1, 0, 2, 3).unsqueeze(0)
do_sample=False
num_beams=5
max_length=30
def inference(image, task_type, instruction):
if task_type == 'Video Captioning':
text = ['']
text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device)
model = MODEL
else:
raise NotImplemented
image = read_video(image)
with torch.autocast(device_type=device_type, dtype=torch.bfloat16, enabled=True):
out = model(image=image, text=text_input, mode='generate', return_dict=True, max_length=max_length,
do_sample=do_sample, num_beams=num_beams)
if 'Captioning' in task_type:
for i, o in enumerate(out):
res = tokenizer.decode(o)
response = res.split('</s>')[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
else:
for o in out:
o_list = o.tolist()
response = tokenizer.decode(o_list).split(special_answer_token)[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
return response
inputs = [gr.Video(source="upload", type="filepath"), gr.inputs.Radio(choices=['Video Captioning'], type="value", default="Video Captioning", label="Task"), gr.inputs.Textbox(lines=1, label="Instruction")]
outputs = ['text']
examples = [
['examples/videos/video7014.mp4', 'Video Captioning', None],
['examples/videos/video7017.mp4', 'Video Captioning', None],
['examples/videos/video7019.mp4', 'Video Captioning', None],
['examples/videos/video7021.mp4', 'Video Captioning', None],
['examples/videos/video7021.mp4', 'Video Captioning', None],
]
title = "eP-ALM for Video-Text tasks"
description = "Gradio Demo for eP-ALM. For this demo, we use 2.7B OPT. As the model runs on CPUs and float16 mixed precision is not supported on CPUs, the generation can take up to 2 mins."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2303.11403' target='_blank'>Paper</a> | <a href='https://github.com/mshukor/eP-ALM' target='_blank'>Github Repo</a></p>"
io = gr.Interface(fn=inference, inputs=inputs, outputs=outputs,
title=title, description=description, article=article, examples=examples, cache_examples=False)
io.launch() |