File size: 4,893 Bytes
87d7283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4da2434
87d7283
 
 
cfdd4c7
 
87d7283
 
 
 
 
4da2434
87d7283
 
 
 
 
 
 
 
 
4da2434
87d7283
 
 
4da2434
 
87d7283
4da2434
87d7283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4da2434
87d7283
 
 
 
 
 
 
4da2434
87d7283
 
 
 
 
 
 
 
 
 
 
2d0b5a3
87d7283
 
 
30f9bc3
87d7283
 
 
 
 
 
4da2434
87d7283
4da2434
 
87d7283
 
4da2434
87d7283
 
 
4da2434
 
 
87d7283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4da2434
87d7283
 
4da2434
 
 
 
 
87d7283
 
4da2434
 
87d7283
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os

os.system('cd TimeSformer;'
          'pip install .; cd ..')

os.system('ls -l')
os.system('pwd')

import os, sys
sys.path.append("/home/user/app/TimeSformer/")



import torch
from torchvision import transforms


from transformers import AutoTokenizer


from PIL import Image
import json 
import os

from torchvision import transforms

from models.epalm import ePALM

import os

from transformers import AutoTokenizer

# import ruamel_yaml as yaml
from ruamel.yaml import YAML

import torch
import gradio as gr


yaml=YAML(typ='safe')



use_cuda = torch.cuda.is_available()
device = torch.device('cuda') if use_cuda else torch.device('cpu')
device_type = 'cuda' if use_cuda else 'cpu'

## Load model

### Captioning 
config = 'configs/video/ePALM_video_caption_msrvtt.yaml'
config = yaml.load(open(config, 'r'))

text_model = 'facebook/opt-2.7b' 
vision_model_name = 'timesformer'



start_layer_idx = 19
end_layer_idx = 31
low_cpu = True 
MODEL = ePALM(opt_model_name=text_model, 
               vision_model_name=vision_model_name, 
               use_vis_prefix=True, 
               start_layer_idx=start_layer_idx, 
               end_layer_idx=end_layer_idx, 
               return_hidden_state_vision=True, 
               config=config,
               low_cpu=low_cpu
)
print("Model Built")
MODEL.to(device)

checkpoint_path = 'checkpoints/float32/ePALM_video_caption_msrvtt/checkpoint_best.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu') 
state_dict = checkpoint['model']
msg = MODEL.load_state_dict(state_dict,strict=False)  

MODEL.bfloat16()




## Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(text_model, use_fast=False)
eos_token = tokenizer.eos_token
pad_token = tokenizer.pad_token

special_answer_token = '</a>'

special_tokens_dict = {'additional_special_tokens': [special_answer_token]}
tokenizer.add_special_tokens(special_tokens_dict)


image_size = 224
normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))



type_transform = transforms.Lambda(lambda x: x.float().div(255.0))
test_transform = transforms.Compose([
    transforms.Resize((image_size,image_size),interpolation=Image.BICUBIC),
    type_transform,
    normalize,
    ])  

from dataset.video_utils import VIDEO_READER_FUNCS
video_reader = VIDEO_READER_FUNCS['decord']

def read_video(path, num_frames=16):
        

    frames, frame_indices, video_duration = video_reader(
        path, num_frames, 'rand', max_num_frames=-1
    )
    video = test_transform(frames)

    return video.permute(1, 0, 2, 3).unsqueeze(0)


do_sample=False
num_beams=5
max_length=30





def inference(image, task_type, instruction):


    if task_type == 'Video Captioning':
        text = ['']  
        text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device) 
        model = MODEL
    else:
        raise NotImplemented

    image = read_video(image)






    with torch.autocast(device_type=device_type, dtype=torch.bfloat16, enabled=True):

        out = model(image=image, text=text_input, mode='generate', return_dict=True, max_length=max_length, 
                    do_sample=do_sample, num_beams=num_beams)


    if 'Captioning' in task_type:
        for i, o in enumerate(out):
            res = tokenizer.decode(o)
            response = res.split('</s>')[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
    else:
        for o in out:
            o_list = o.tolist()
            response = tokenizer.decode(o_list).split(special_answer_token)[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True

    return response


inputs = [gr.Video(source="upload", type="filepath"), gr.inputs.Radio(choices=['Video Captioning'], type="value", default="Video Captioning", label="Task"), gr.inputs.Textbox(lines=1, label="Instruction")]
outputs = ['text']
examples = [
    ['examples/videos/video7014.mp4', 'Video Captioning', None], 
    ['examples/videos/video7017.mp4', 'Video Captioning', None], 
    ['examples/videos/video7019.mp4', 'Video Captioning', None], 
    ['examples/videos/video7021.mp4', 'Video Captioning', None], 
    ['examples/videos/video7021.mp4', 'Video Captioning', None], 
]

title = "eP-ALM for Video-Text tasks"
description = "Gradio Demo for eP-ALM. For this demo, we use 2.7B OPT. As the model runs on CPUs and float16 mixed precision is not supported on CPUs, the generation can take up to 2 mins."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2303.11403' target='_blank'>Paper</a> | <a href='https://github.com/mshukor/eP-ALM' target='_blank'>Github Repo</a></p>"

io = gr.Interface(fn=inference, inputs=inputs, outputs=outputs,
                  title=title, description=description, article=article, examples=examples, cache_examples=False)
io.launch()