Spaces:
Build error
Build error
import re | |
import torch | |
from torch import nn | |
exclude_list = ['model_text', 'transformer', 'model_vision'] | |
def filter_msg(msg, exclude_list): | |
new_msg = [] | |
if len(msg) > 1: | |
for k in msg[0]: # missing | |
if not any([e in k for e in exclude_list]) or 'adapter' in k: | |
new_msg.append(k) | |
return new_msg | |
def filter_state(state, exclude_list): | |
import collections | |
new_tmp = collections.OrderedDict() | |
for k, v in state.items(): | |
if not any([e in k for e in exclude_list]) or 'adapter' in k: | |
new_tmp[k] = state[k] | |
return new_tmp | |
def freeze_whole_model(model): | |
for n, p in model.named_parameters(): | |
p.requires_grad = False | |
def unfreeze_parameters(model, config): | |
# targets = '*.proj_*|*_proj*|*itm_head*|*queue*|*adapter*|*temp*|*.cls.*' | |
targets = ['prompt'] # lm_head | |
if not config.get('freeze_connector', False): | |
targets = targets + ['connector'] | |
if config.get('unfreeze_text_layer_norm', False): | |
targets = targets + ['self_attn_layer_norm', 'final_layer_norm'] | |
if config.get('unfreeze_vision_layer_norm', False): | |
targets = targets + ['norm', 'norm1', 'norm2'] | |
if config.get('unfreeze_text_model', False): | |
targets = targets + ['model_text'] | |
if config.get('unfreeze_vision_model', False): | |
targets = targets + ['model_vision'] | |
if config.get('use_adapters', False): | |
targets = targets + ['adapter'] | |
print('unfreeze targets:', targets) | |
for n, p in model.named_parameters(): | |
if any(t in n for t in targets): | |
# if re.fullmatch(targets, n): | |
p.requires_grad = True | |
print(f"{n} is trainable...") | |
def print_trainable_params_percentage(model): | |
orig_param_size = sum(p.numel() for p in model.parameters()) | |
def count_parameters(model): | |
return sum(p.numel() for p in model.parameters() if p.requires_grad) | |
trainable_size = count_parameters(model) | |
percentage = trainable_size / orig_param_size * 100 | |
print(f"Trainable param percentage: {percentage:.2f}% ({trainable_size}/{orig_param_size})") | |
return percentage | |
def shift_right(input_ids, decoder_start_token_id=2, pad_token_id=None): | |
# shift inputs to the right | |
shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() | |
shifted_input_ids[..., 0] = decoder_start_token_id | |
# replace possible -100 values in labels by `pad_token_id` | |
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) | |
assert torch.all(shifted_input_ids >= 0).item(), "Verify that `shifted_input_ids` has only positive values" | |
return shifted_input_ids |