Spaces:
Build error
Build error
""" Vision Transformer (ViT) in PyTorch | |
A PyTorch implement of Vision Transformers as described in: | |
'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' | |
- https://arxiv.org/abs/2010.11929 | |
`How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers` | |
- https://arxiv.org/abs/2106.10270 | |
The official jax code is released and available at https://github.com/google-research/vision_transformer | |
Acknowledgments: | |
* The paper authors for releasing code and weights, thanks! | |
* I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out | |
for some einops/einsum fun | |
* Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT | |
* Bert reference code checks against Huggingface Transformers and Tensorflow Bert | |
Hacked together by / Copyright 2020, Ross Wightman | |
""" | |
import math | |
import logging | |
from functools import partial | |
from collections import OrderedDict | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD | |
from timm.models.helpers import build_model_with_cfg, resolve_pretrained_cfg, named_apply, adapt_input_conv, checkpoint_seq | |
from timm.models.layers import PatchEmbed, Mlp, DropPath, trunc_normal_, lecun_normal_ | |
from timm.models.registry import register_model | |
_logger = logging.getLogger(__name__) | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 0, 'input_size': (3, 224, 224), 'pool_size': None, | |
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, | |
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, | |
'first_conv': 'patch_embed.proj', 'classifier': 'head', | |
**kwargs | |
} | |
default_cfgs = { | |
# patch models (weights from official Google JAX impl) | |
'vit_tiny_patch16_224': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'), | |
'vit_tiny_patch16_384': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'vit_small_patch32_224': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'), | |
'vit_small_patch32_384': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'vit_small_patch16_224': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'), | |
'vit_small_patch16_384': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'vit_base_patch32_224': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'), | |
'vit_base_patch32_384': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'B_32-i21k-300ep-lr_0.001-aug_light1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'vit_base_patch16_224': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz'), | |
'vit_base_patch16_384': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'vit_base_patch8_224': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'B_8-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz'), | |
'vit_large_patch32_224': _cfg( | |
url='', # no official model weights for this combo, only for in21k | |
), | |
'vit_large_patch32_384': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p32_384-9b920ba8.pth', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'vit_large_patch16_224': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz'), | |
'vit_large_patch16_384': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/' | |
'L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'vit_large_patch14_224': _cfg(url=''), | |
'vit_huge_patch14_224': _cfg(url=''), | |
'vit_giant_patch14_224': _cfg(url=''), | |
'vit_gigantic_patch14_224': _cfg(url=''), | |
# patch models, imagenet21k (weights from official Google JAX impl) | |
'vit_tiny_patch16_224_in21k': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0.npz', | |
num_classes=21843), | |
'vit_small_patch32_224_in21k': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz', | |
num_classes=21843), | |
'vit_small_patch16_224_in21k': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz', | |
num_classes=21843), | |
'vit_base_patch32_224_in21k': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0.npz', | |
num_classes=21843), | |
'vit_base_patch16_224_in21k': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz', | |
num_classes=21843), | |
'vit_base_patch8_224_in21k': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/B_8-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz', | |
num_classes=21843), | |
'vit_large_patch32_224_in21k': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth', | |
num_classes=21843), | |
'vit_large_patch16_224_in21k': _cfg( | |
url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1.npz', | |
num_classes=21843), | |
'vit_huge_patch14_224_in21k': _cfg( | |
url='https://storage.googleapis.com/vit_models/imagenet21k/ViT-H_14.npz', | |
hf_hub_id='timm/vit_huge_patch14_224_in21k', | |
num_classes=21843), | |
# SAM trained models (https://arxiv.org/abs/2106.01548) | |
'vit_base_patch32_224_sam': _cfg( | |
url='https://storage.googleapis.com/vit_models/sam/ViT-B_32.npz'), | |
'vit_base_patch16_224_sam': _cfg( | |
url='https://storage.googleapis.com/vit_models/sam/ViT-B_16.npz'), | |
# DINO pretrained - https://arxiv.org/abs/2104.14294 (no classifier head, for fine-tune only) | |
'vit_small_patch16_224_dino': _cfg( | |
url='https://dl.fbaipublicfiles.com/dino/dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), | |
'vit_small_patch8_224_dino': _cfg( | |
url='https://dl.fbaipublicfiles.com/dino/dino_deitsmall8_pretrain/dino_deitsmall8_pretrain.pth', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), | |
'vit_base_patch16_224_dino': _cfg( | |
url='https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), | |
'vit_base_patch8_224_dino': _cfg( | |
url='https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), | |
# ViT ImageNet-21K-P pretraining by MILL | |
'vit_base_patch16_224_miil_in21k': _cfg( | |
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/vit_base_patch16_224_in21k_miil.pth', | |
mean=(0, 0, 0), std=(1, 1, 1), crop_pct=0.875, interpolation='bilinear', num_classes=11221, | |
), | |
'vit_base_patch16_224_miil': _cfg( | |
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm' | |
'/vit_base_patch16_224_1k_miil_84_4.pth', | |
mean=(0, 0, 0), std=(1, 1, 1), crop_pct=0.875, interpolation='bilinear', | |
), | |
'vit_base_patch16_rpn_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_base_patch16_rpn_224-sw-3b07e89d.pth'), | |
# experimental (may be removed) | |
'vit_base_patch32_plus_256': _cfg(url='', input_size=(3, 256, 256), crop_pct=0.95), | |
'vit_base_patch16_plus_240': _cfg(url='', input_size=(3, 240, 240), crop_pct=0.95), | |
'vit_small_patch16_36x1_224': _cfg(url=''), | |
'vit_small_patch16_18x2_224': _cfg(url=''), | |
'vit_base_patch16_18x2_224': _cfg(url=''), | |
} | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
assert dim % num_heads == 0, 'dim should be divisible by num_heads' | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class LayerScale(nn.Module): | |
def __init__(self, dim, init_values=1e-5, inplace=False): | |
super().__init__() | |
self.inplace = inplace | |
self.gamma = nn.Parameter(init_values * torch.ones(dim)) | |
def forward(self, x): | |
return x.mul_(self.gamma) if self.inplace else x * self.gamma | |
class Block(nn.Module): | |
def __init__( | |
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None, | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) | |
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop) | |
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() | |
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
def forward(self, x): | |
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x)))) | |
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) | |
return x | |
class ResPostBlock(nn.Module): | |
def __init__( | |
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None, | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.init_values = init_values | |
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) | |
self.norm1 = norm_layer(dim) | |
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop) | |
self.norm2 = norm_layer(dim) | |
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.init_weights() | |
def init_weights(self): | |
# NOTE this init overrides that base model init with specific changes for the block type | |
if self.init_values is not None: | |
nn.init.constant_(self.norm1.weight, self.init_values) | |
nn.init.constant_(self.norm2.weight, self.init_values) | |
def forward(self, x): | |
x = x + self.drop_path1(self.norm1(self.attn(x))) | |
x = x + self.drop_path2(self.norm2(self.mlp(x))) | |
return x | |
class ParallelBlock(nn.Module): | |
def __init__( | |
self, dim, num_heads, num_parallel=2, mlp_ratio=4., qkv_bias=False, init_values=None, | |
drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.num_parallel = num_parallel | |
self.attns = nn.ModuleList() | |
self.ffns = nn.ModuleList() | |
for _ in range(num_parallel): | |
self.attns.append(nn.Sequential(OrderedDict([ | |
('norm', norm_layer(dim)), | |
('attn', Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)), | |
('ls', LayerScale(dim, init_values=init_values) if init_values else nn.Identity()), | |
('drop_path', DropPath(drop_path) if drop_path > 0. else nn.Identity()) | |
]))) | |
self.ffns.append(nn.Sequential(OrderedDict([ | |
('norm', norm_layer(dim)), | |
('mlp', Mlp(dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop)), | |
('ls', LayerScale(dim, init_values=init_values) if init_values else nn.Identity()), | |
('drop_path', DropPath(drop_path) if drop_path > 0. else nn.Identity()) | |
]))) | |
def _forward_jit(self, x): | |
x = x + torch.stack([attn(x) for attn in self.attns]).sum(dim=0) | |
x = x + torch.stack([ffn(x) for ffn in self.ffns]).sum(dim=0) | |
return x | |
def _forward(self, x): | |
x = x + sum(attn(x) for attn in self.attns) | |
x = x + sum(ffn(x) for ffn in self.ffns) | |
return x | |
def forward(self, x): | |
if torch.jit.is_scripting() or torch.jit.is_tracing(): | |
return self._forward_jit(x) | |
else: | |
return self._forward(x) | |
class VisionTransformer(nn.Module): | |
""" Vision Transformer | |
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` | |
- https://arxiv.org/abs/2010.11929 | |
""" | |
def __init__( | |
self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='token', | |
embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, init_values=None, | |
class_token=True, no_embed_class=False, fc_norm=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., | |
weight_init='', embed_layer=PatchEmbed, norm_layer=None, act_layer=None, block_fn=Block, | |
return_hidden_state=False, mask_p=0): | |
""" | |
Args: | |
img_size (int, tuple): input image size | |
patch_size (int, tuple): patch size | |
in_chans (int): number of input channels | |
num_classes (int): number of classes for classification head | |
global_pool (str): type of global pooling for final sequence (default: 'token') | |
embed_dim (int): embedding dimension | |
depth (int): depth of transformer | |
num_heads (int): number of attention heads | |
mlp_ratio (int): ratio of mlp hidden dim to embedding dim | |
qkv_bias (bool): enable bias for qkv if True | |
init_values: (float): layer-scale init values | |
class_token (bool): use class token | |
fc_norm (Optional[bool]): pre-fc norm after pool, set if global_pool == 'avg' if None (default: None) | |
drop_rate (float): dropout rate | |
attn_drop_rate (float): attention dropout rate | |
drop_path_rate (float): stochastic depth rate | |
weight_init (str): weight init scheme | |
embed_layer (nn.Module): patch embedding layer | |
norm_layer: (nn.Module): normalization layer | |
act_layer: (nn.Module): MLP activation layer | |
""" | |
super().__init__() | |
assert global_pool in ('', 'avg', 'token') | |
assert class_token or global_pool != 'token' | |
use_fc_norm = global_pool == 'avg' if fc_norm is None else fc_norm | |
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) | |
act_layer = act_layer or nn.GELU | |
self.num_classes = num_classes | |
self.global_pool = global_pool | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
self.num_prefix_tokens = 1 if class_token else 0 | |
self.no_embed_class = no_embed_class | |
self.grad_checkpointing = False | |
self.patch_embed = embed_layer( | |
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None | |
embed_len = num_patches if no_embed_class else num_patches + self.num_prefix_tokens | |
self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * .02) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
self.depth = depth | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
self.blocks = nn.ModuleList([ | |
block_fn( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, init_values=init_values, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer) | |
for i in range(depth)]) | |
self.norm = norm_layer(embed_dim) if not use_fc_norm else nn.Identity() | |
# Classifier Head | |
self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity() | |
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
if weight_init != 'skip': | |
self.init_weights(weight_init) | |
self.return_hidden_state = return_hidden_state | |
self.mask_p = mask_p | |
def init_weights(self, mode=''): | |
assert mode in ('jax', 'jax_nlhb', 'moco', '') | |
head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0. | |
trunc_normal_(self.pos_embed, std=.02) | |
if self.cls_token is not None: | |
nn.init.normal_(self.cls_token, std=1e-6) | |
named_apply(get_init_weights_vit(mode, head_bias), self) | |
def _init_weights(self, m): | |
# this fn left here for compat with downstream users | |
init_weights_vit_timm(m) | |
def load_pretrained(self, checkpoint_path, prefix=''): | |
_load_weights(self, checkpoint_path, prefix) | |
def no_weight_decay(self): | |
return {'pos_embed', 'cls_token', 'dist_token'} | |
def group_matcher(self, coarse=False): | |
return dict( | |
stem=r'^cls_token|pos_embed|patch_embed', # stem and embed | |
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] | |
) | |
def set_grad_checkpointing(self, enable=True): | |
self.grad_checkpointing = enable | |
def get_classifier(self): | |
return self.head | |
def reset_classifier(self, num_classes: int, global_pool=None): | |
self.num_classes = num_classes | |
if global_pool is not None: | |
assert global_pool in ('', 'avg', 'token') | |
self.global_pool = global_pool | |
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
def _pos_embed(self, x): | |
if self.no_embed_class: | |
# deit-3, updated JAX (big vision) | |
# position embedding does not overlap with class token, add then concat | |
x = x + self.pos_embed | |
if self.cls_token is not None: | |
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) | |
else: | |
# original timm, JAX, and deit vit impl | |
# pos_embed has entry for class token, concat then add | |
if self.cls_token is not None: | |
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) | |
x = x + self.pos_embed | |
return self.pos_drop(x) | |
def forward_features(self, x): | |
x = self.patch_embed(x) | |
x = self._pos_embed(x) | |
if self.grad_checkpointing and not torch.jit.is_scripting(): | |
x = checkpoint_seq(self.blocks, x) | |
else: | |
x = self.blocks(x) | |
x = self.norm(x) | |
return x | |
def forward_head(self, x, pre_logits: bool = False): | |
if self.global_pool: | |
x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] | |
x = self.fc_norm(x) | |
return x if pre_logits else self.head(x) | |
# def forward(self, x): | |
# x = self.forward_features(x) | |
# x = self.forward_head(x) | |
# return x | |
def forward(self, x, external_features=None): | |
all_hidden_states = () if self.return_hidden_state else None | |
B = x.shape[0] | |
x = self.patch_embed(x) | |
cls_tokens = self.cls_token.expand(B, -1, -1) | |
x = torch.cat((cls_tokens, x), dim=1) | |
x = x + self.pos_embed[:,:x.size(1),:] | |
x = self.pos_drop(x) | |
if self.mask_p and self.training: | |
num_samples = int((1-self.mask_p)*(x.shape[1]-1)) | |
# idx = torch.tensor(np.random.choice(range(x.shape[1]-1), replace=False)) | |
L = x.shape[1]-1 | |
noise = torch.rand(x.shape[0], L, device=x.device) | |
idx = torch.argsort(noise, dim=1) | |
idx = idx[:, :num_samples] | |
# idx = x[:, :, 0].multinomial(num_samples=num_samples, replacement=False) | |
clst = x[:, :1, :] | |
sampled_x = torch.gather(x[:, 1:, :], dim=1, index=idx.unsqueeze(-1).repeat(1, 1, x.shape[-1])) | |
x = torch.cat((clst, sampled_x), dim=1) | |
if external_features is not None: | |
x = torch.cat((x, external_features), dim=1) | |
for i,blk in enumerate(self.blocks): | |
x = blk(x) | |
if self.return_hidden_state: | |
all_hidden_states = all_hidden_states + (self.norm(x),) | |
x = self.norm(x) | |
if self.return_hidden_state: | |
return x, all_hidden_states | |
else: | |
return x | |
def init_weights_vit_timm(module: nn.Module, name: str = ''): | |
""" ViT weight initialization, original timm impl (for reproducibility) """ | |
if isinstance(module, nn.Linear): | |
trunc_normal_(module.weight, std=.02) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif hasattr(module, 'init_weights'): | |
module.init_weights() | |
def init_weights_vit_jax(module: nn.Module, name: str = '', head_bias: float = 0.): | |
""" ViT weight initialization, matching JAX (Flax) impl """ | |
if isinstance(module, nn.Linear): | |
if name.startswith('head'): | |
nn.init.zeros_(module.weight) | |
nn.init.constant_(module.bias, head_bias) | |
else: | |
nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
nn.init.normal_(module.bias, std=1e-6) if 'mlp' in name else nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Conv2d): | |
lecun_normal_(module.weight) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif hasattr(module, 'init_weights'): | |
module.init_weights() | |
def init_weights_vit_moco(module: nn.Module, name: str = ''): | |
""" ViT weight initialization, matching moco-v3 impl minus fixed PatchEmbed """ | |
if isinstance(module, nn.Linear): | |
if 'qkv' in name: | |
# treat the weights of Q, K, V separately | |
val = math.sqrt(6. / float(module.weight.shape[0] // 3 + module.weight.shape[1])) | |
nn.init.uniform_(module.weight, -val, val) | |
else: | |
nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif hasattr(module, 'init_weights'): | |
module.init_weights() | |
def get_init_weights_vit(mode='jax', head_bias: float = 0.): | |
if 'jax' in mode: | |
return partial(init_weights_vit_jax, head_bias=head_bias) | |
elif 'moco' in mode: | |
return init_weights_vit_moco | |
else: | |
return init_weights_vit_timm | |
def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''): | |
""" Load weights from .npz checkpoints for official Google Brain Flax implementation | |
""" | |
import numpy as np | |
def _n2p(w, t=True): | |
if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1: | |
w = w.flatten() | |
if t: | |
if w.ndim == 4: | |
w = w.transpose([3, 2, 0, 1]) | |
elif w.ndim == 3: | |
w = w.transpose([2, 0, 1]) | |
elif w.ndim == 2: | |
w = w.transpose([1, 0]) | |
return torch.from_numpy(w) | |
w = np.load(checkpoint_path) | |
if not prefix and 'opt/target/embedding/kernel' in w: | |
prefix = 'opt/target/' | |
if hasattr(model.patch_embed, 'backbone'): | |
# hybrid | |
backbone = model.patch_embed.backbone | |
stem_only = not hasattr(backbone, 'stem') | |
stem = backbone if stem_only else backbone.stem | |
stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel']))) | |
stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale'])) | |
stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias'])) | |
if not stem_only: | |
for i, stage in enumerate(backbone.stages): | |
for j, block in enumerate(stage.blocks): | |
bp = f'{prefix}block{i + 1}/unit{j + 1}/' | |
for r in range(3): | |
getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel'])) | |
getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale'])) | |
getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias'])) | |
if block.downsample is not None: | |
block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel'])) | |
block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale'])) | |
block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias'])) | |
embed_conv_w = _n2p(w[f'{prefix}embedding/kernel']) | |
else: | |
embed_conv_w = adapt_input_conv( | |
model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel'])) | |
model.patch_embed.proj.weight.copy_(embed_conv_w) | |
model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias'])) | |
model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False)) | |
pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False) | |
if pos_embed_w.shape != model.pos_embed.shape: | |
pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights | |
pos_embed_w, | |
model.pos_embed, | |
getattr(model, 'num_prefix_tokens', 1), | |
model.patch_embed.grid_size | |
) | |
model.pos_embed.copy_(pos_embed_w) | |
model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale'])) | |
model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias'])) | |
if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]: | |
model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel'])) | |
model.head.bias.copy_(_n2p(w[f'{prefix}head/bias'])) | |
# NOTE representation layer has been removed, not used in latest 21k/1k pretrained weights | |
# if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w: | |
# model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel'])) | |
# model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias'])) | |
for i, block in enumerate(model.blocks.children()): | |
block_prefix = f'{prefix}Transformer/encoderblock_{i}/' | |
mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/' | |
block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale'])) | |
block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias'])) | |
block.attn.qkv.weight.copy_(torch.cat([ | |
_n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')])) | |
block.attn.qkv.bias.copy_(torch.cat([ | |
_n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')])) | |
block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1)) | |
block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias'])) | |
for r in range(2): | |
getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel'])) | |
getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias'])) | |
block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale'])) | |
block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias'])) | |
def resize_pos_embed(posemb, posemb_new, num_prefix_tokens=1, gs_new=()): | |
# Rescale the grid of position embeddings when loading from state_dict. Adapted from | |
# https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224 | |
_logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape) | |
ntok_new = posemb_new.shape[1] | |
if num_prefix_tokens: | |
posemb_prefix, posemb_grid = posemb[:, :num_prefix_tokens], posemb[0, num_prefix_tokens:] | |
ntok_new -= num_prefix_tokens | |
else: | |
posemb_prefix, posemb_grid = posemb[:, :0], posemb[0] | |
gs_old = int(math.sqrt(len(posemb_grid))) | |
if not len(gs_new): # backwards compatibility | |
gs_new = [int(math.sqrt(ntok_new))] * 2 | |
assert len(gs_new) >= 2 | |
_logger.info('Position embedding grid-size from %s to %s', [gs_old, gs_old], gs_new) | |
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) | |
posemb_grid = F.interpolate(posemb_grid, size=gs_new, mode='bicubic', align_corners=False) | |
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1) | |
posemb = torch.cat([posemb_prefix, posemb_grid], dim=1) | |
return posemb | |
def checkpoint_filter_fn(state_dict, model, adapt_layer_scale=False): | |
""" convert patch embedding weight from manual patchify + linear proj to conv""" | |
import re | |
out_dict = {} | |
if 'model' in state_dict: | |
# For deit models | |
state_dict = state_dict['model'] | |
for k, v in state_dict.items(): | |
if 'patch_embed.proj.weight' in k and len(v.shape) < 4: | |
# For old models that I trained prior to conv based patchification | |
O, I, H, W = model.patch_embed.proj.weight.shape | |
v = v.reshape(O, -1, H, W) | |
elif k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]: | |
# To resize pos embedding when using model at different size from pretrained weights | |
v = resize_pos_embed( | |
v, | |
model.pos_embed, | |
getattr(model, 'num_prefix_tokens', 1), | |
model.patch_embed.grid_size | |
) | |
elif adapt_layer_scale and 'gamma_' in k: | |
# remap layer-scale gamma into sub-module (deit3 models) | |
k = re.sub(r'gamma_([0-9])', r'ls\1.gamma', k) | |
elif 'pre_logits' in k: | |
# NOTE representation layer removed as not used in latest 21k/1k pretrained weights | |
continue | |
out_dict[k] = v | |
return out_dict | |
def _create_vision_transformer(variant, pretrained=False, **kwargs): | |
if kwargs.get('features_only', None): | |
raise RuntimeError('features_only not implemented for Vision Transformer models.') | |
pretrained_cfg = resolve_pretrained_cfg(variant, pretrained_cfg=kwargs.pop('pretrained_cfg', None)) | |
model = build_model_with_cfg( | |
VisionTransformer, variant, pretrained, | |
pretrained_cfg=pretrained_cfg, | |
pretrained_filter_fn=checkpoint_filter_fn, | |
pretrained_custom_load='npz' in pretrained_cfg['url'], | |
**kwargs) | |
return model | |
def vit_tiny_patch16_224(pretrained=False, **kwargs): | |
""" ViT-Tiny (Vit-Ti/16) | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs) | |
model = _create_vision_transformer('vit_tiny_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_tiny_patch16_384(pretrained=False, **kwargs): | |
""" ViT-Tiny (Vit-Ti/16) @ 384x384. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs) | |
model = _create_vision_transformer('vit_tiny_patch16_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_small_patch32_224(pretrained=False, **kwargs): | |
""" ViT-Small (ViT-S/32) | |
""" | |
model_kwargs = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6, **kwargs) | |
model = _create_vision_transformer('vit_small_patch32_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_small_patch32_384(pretrained=False, **kwargs): | |
""" ViT-Small (ViT-S/32) at 384x384. | |
""" | |
model_kwargs = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6, **kwargs) | |
model = _create_vision_transformer('vit_small_patch32_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_small_patch16_224(pretrained=False, **kwargs): | |
""" ViT-Small (ViT-S/16) | |
NOTE I've replaced my previous 'small' model definition and weights with the small variant from the DeiT paper | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) | |
model = _create_vision_transformer('vit_small_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_small_patch16_384(pretrained=False, **kwargs): | |
""" ViT-Small (ViT-S/16) | |
NOTE I've replaced my previous 'small' model definition and weights with the small variant from the DeiT paper | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) | |
model = _create_vision_transformer('vit_small_patch16_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch32_224(pretrained=False, **kwargs): | |
""" ViT-Base (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-1k weights fine-tuned from in21k, source https://github.com/google-research/vision_transformer. | |
""" | |
model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('vit_base_patch32_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch32_384(pretrained=False, **kwargs): | |
""" ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. | |
""" | |
model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('vit_base_patch32_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch16_224(pretrained=False, **kwargs): | |
""" ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('vit_base_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch16_384(pretrained=False, **kwargs): | |
""" ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('vit_base_patch16_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch8_224(pretrained=False, **kwargs): | |
""" ViT-Base (ViT-B/8) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. | |
""" | |
model_kwargs = dict(patch_size=8, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('vit_base_patch8_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_large_patch32_224(pretrained=False, **kwargs): | |
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). No pretrained weights. | |
""" | |
model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, **kwargs) | |
model = _create_vision_transformer('vit_large_patch32_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_large_patch32_384(pretrained=False, **kwargs): | |
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. | |
""" | |
model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, **kwargs) | |
model = _create_vision_transformer('vit_large_patch32_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_large_patch16_224(pretrained=False, **kwargs): | |
""" ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs) | |
model = _create_vision_transformer('vit_large_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_large_patch16_384(pretrained=False, **kwargs): | |
""" ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs) | |
model = _create_vision_transformer('vit_large_patch16_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_large_patch14_224(pretrained=False, **kwargs): | |
""" ViT-Large model (ViT-L/14) | |
""" | |
model_kwargs = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16, **kwargs) | |
model = _create_vision_transformer('vit_large_patch14_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_huge_patch14_224(pretrained=False, **kwargs): | |
""" ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929). | |
""" | |
model_kwargs = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, **kwargs) | |
model = _create_vision_transformer('vit_huge_patch14_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_giant_patch14_224(pretrained=False, **kwargs): | |
""" ViT-Giant model (ViT-g/14) from `Scaling Vision Transformers` - https://arxiv.org/abs/2106.04560 | |
""" | |
model_kwargs = dict(patch_size=14, embed_dim=1408, mlp_ratio=48/11, depth=40, num_heads=16, **kwargs) | |
model = _create_vision_transformer('vit_giant_patch14_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_gigantic_patch14_224(pretrained=False, **kwargs): | |
""" ViT-Gigantic model (ViT-G/14) from `Scaling Vision Transformers` - https://arxiv.org/abs/2106.04560 | |
""" | |
model_kwargs = dict(patch_size=14, embed_dim=1664, mlp_ratio=64/13, depth=48, num_heads=16, **kwargs) | |
model = _create_vision_transformer('vit_gigantic_patch14_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_tiny_patch16_224_in21k(pretrained=False, **kwargs): | |
""" ViT-Tiny (Vit-Ti/16). | |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. | |
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs) | |
model = _create_vision_transformer('vit_tiny_patch16_224_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_small_patch32_224_in21k(pretrained=False, **kwargs): | |
""" ViT-Small (ViT-S/16) | |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. | |
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer | |
""" | |
model_kwargs = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6, **kwargs) | |
model = _create_vision_transformer('vit_small_patch32_224_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_small_patch16_224_in21k(pretrained=False, **kwargs): | |
""" ViT-Small (ViT-S/16) | |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. | |
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) | |
model = _create_vision_transformer('vit_small_patch16_224_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch32_224_in21k(pretrained=False, **kwargs): | |
""" ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. | |
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer | |
""" | |
model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('vit_base_patch32_224_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch16_224_in21k(pretrained=False, **kwargs): | |
""" ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. | |
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('vit_base_patch16_224_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch8_224_in21k(pretrained=False, **kwargs): | |
""" ViT-Base model (ViT-B/8) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. | |
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer | |
""" | |
model_kwargs = dict(patch_size=8, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('vit_base_patch8_224_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_large_patch32_224_in21k(pretrained=False, **kwargs): | |
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. | |
NOTE: this model has a representation layer but the 21k classifier head is zero'd out in original weights | |
""" | |
model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, **kwargs) | |
model = _create_vision_transformer('vit_large_patch32_224_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_large_patch16_224_in21k(pretrained=False, **kwargs): | |
""" ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. | |
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs) | |
model = _create_vision_transformer('vit_large_patch16_224_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_huge_patch14_224_in21k(pretrained=False, **kwargs): | |
""" ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. | |
NOTE: this model has a representation layer but the 21k classifier head is zero'd out in original weights | |
""" | |
model_kwargs = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, **kwargs) | |
model = _create_vision_transformer('vit_huge_patch14_224_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch16_224_sam(pretrained=False, **kwargs): | |
""" ViT-Base (ViT-B/16) w/ SAM pretrained weights. Paper: https://arxiv.org/abs/2106.01548 | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('vit_base_patch16_224_sam', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch32_224_sam(pretrained=False, **kwargs): | |
""" ViT-Base (ViT-B/32) w/ SAM pretrained weights. Paper: https://arxiv.org/abs/2106.01548 | |
""" | |
model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('vit_base_patch32_224_sam', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_small_patch16_224_dino(pretrained=False, **kwargs): | |
""" ViT-Small (ViT-S/16) w/ DINO pretrained weights (no head) - https://arxiv.org/abs/2104.14294 | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) | |
model = _create_vision_transformer('vit_small_patch16_224_dino', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_small_patch8_224_dino(pretrained=False, **kwargs): | |
""" ViT-Small (ViT-S/8) w/ DINO pretrained weights (no head) - https://arxiv.org/abs/2104.14294 | |
""" | |
model_kwargs = dict(patch_size=8, embed_dim=384, depth=12, num_heads=6, **kwargs) | |
model = _create_vision_transformer('vit_small_patch8_224_dino', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch16_224_dino(pretrained=False, **kwargs): | |
""" ViT-Base (ViT-B/16) /w DINO pretrained weights (no head) - https://arxiv.org/abs/2104.14294 | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('vit_base_patch16_224_dino', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch8_224_dino(pretrained=False, **kwargs): | |
""" ViT-Base (ViT-B/8) w/ DINO pretrained weights (no head) - https://arxiv.org/abs/2104.14294 | |
""" | |
model_kwargs = dict(patch_size=8, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_vision_transformer('vit_base_patch8_224_dino', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch16_224_miil_in21k(pretrained=False, **kwargs): | |
""" ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). | |
Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, **kwargs) | |
model = _create_vision_transformer('vit_base_patch16_224_miil_in21k', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch16_224_miil(pretrained=False, **kwargs): | |
""" ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). | |
Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, **kwargs) | |
model = _create_vision_transformer('vit_base_patch16_224_miil', pretrained=pretrained, **model_kwargs) | |
return model | |
# Experimental models below | |
def vit_base_patch32_plus_256(pretrained=False, **kwargs): | |
""" ViT-Base (ViT-B/32+) | |
""" | |
model_kwargs = dict(patch_size=32, embed_dim=896, depth=12, num_heads=14, init_values=1e-5, **kwargs) | |
model = _create_vision_transformer('vit_base_patch32_plus_256', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch16_plus_240(pretrained=False, **kwargs): | |
""" ViT-Base (ViT-B/16+) | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=896, depth=12, num_heads=14, init_values=1e-5, **kwargs) | |
model = _create_vision_transformer('vit_base_patch16_plus_240', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch16_rpn_224(pretrained=False, **kwargs): | |
""" ViT-Base (ViT-B/16) w/ residual post-norm | |
""" | |
model_kwargs = dict( | |
patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, init_values=1e-5, class_token=False, | |
block_fn=ResPostBlock, global_pool=kwargs.pop('global_pool', 'avg'), **kwargs) | |
model = _create_vision_transformer('vit_base_patch16_rpn_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_small_patch16_36x1_224(pretrained=False, **kwargs): | |
""" ViT-Base w/ LayerScale + 36 x 1 (36 block serial) config. Experimental, may remove. | |
Based on `Three things everyone should know about Vision Transformers` - https://arxiv.org/abs/2203.09795 | |
Paper focuses on 24x2 + 48x1 for 'Small' width but those are extremely slow. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=384, depth=36, num_heads=6, init_values=1e-5, **kwargs) | |
model = _create_vision_transformer('vit_small_patch16_36x1_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_small_patch16_18x2_224(pretrained=False, **kwargs): | |
""" ViT-Small w/ LayerScale + 18 x 2 (36 block parallel) config. Experimental, may remove. | |
Based on `Three things everyone should know about Vision Transformers` - https://arxiv.org/abs/2203.09795 | |
Paper focuses on 24x2 + 48x1 for 'Small' width but those are extremely slow. | |
""" | |
model_kwargs = dict( | |
patch_size=16, embed_dim=384, depth=18, num_heads=6, init_values=1e-5, block_fn=ParallelBlock, **kwargs) | |
model = _create_vision_transformer('vit_small_patch16_18x2_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def vit_base_patch16_18x2_224(pretrained=False, **kwargs): | |
""" ViT-Base w/ LayerScale + 18 x 2 (36 block parallel) config. Experimental, may remove. | |
Based on `Three things everyone should know about Vision Transformers` - https://arxiv.org/abs/2203.09795 | |
""" | |
model_kwargs = dict( | |
patch_size=16, embed_dim=768, depth=18, num_heads=12, init_values=1e-5, block_fn=ParallelBlock, **kwargs) | |
model = _create_vision_transformer('vit_base_patch16_18x2_224', pretrained=pretrained, **model_kwargs) | |
return model | |