import os os.system('cd TimeSformer;' 'pip install .; cd ..') os.system('ls -l') os.system('pwd') import os, sys sys.path.append("/home/user/app/TimeSformer/") import torch from torchvision import transforms from transformers import AutoTokenizer from PIL import Image import json import os from torchvision import transforms from models.epalm import ePALM import os from transformers import AutoTokenizer # import ruamel_yaml as yaml from ruamel.yaml import YAML import torch import gradio as gr yaml=YAML(typ='safe') use_cuda = torch.cuda.is_available() device = torch.device('cuda') if use_cuda else torch.device('cpu') device_type = 'cuda' if use_cuda else 'cpu' ## Load model ### Captioning config = 'configs/video/ePALM_video_caption_msrvtt.yaml' config = yaml.load(open(config, 'r')) text_model = 'facebook/opt-2.7b' vision_model_name = 'timesformer' start_layer_idx = 19 end_layer_idx = 31 low_cpu = True MODEL = ePALM(opt_model_name=text_model, vision_model_name=vision_model_name, use_vis_prefix=True, start_layer_idx=start_layer_idx, end_layer_idx=end_layer_idx, return_hidden_state_vision=True, config=config, low_cpu=low_cpu ) print("Model Built") MODEL.to(device) checkpoint_path = 'checkpoints/float32/ePALM_video_caption_msrvtt/checkpoint_best.pth' checkpoint = torch.load(checkpoint_path, map_location='cpu') state_dict = checkpoint['model'] msg = MODEL.load_state_dict(state_dict,strict=False) MODEL.bfloat16() ## Load tokenizer tokenizer = AutoTokenizer.from_pretrained(text_model, use_fast=False) eos_token = tokenizer.eos_token pad_token = tokenizer.pad_token special_answer_token = '' special_tokens_dict = {'additional_special_tokens': [special_answer_token]} tokenizer.add_special_tokens(special_tokens_dict) image_size = 224 normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) type_transform = transforms.Lambda(lambda x: x.float().div(255.0)) test_transform = transforms.Compose([ transforms.Resize((image_size,image_size),interpolation=Image.BICUBIC), type_transform, normalize, ]) from dataset.video_utils import VIDEO_READER_FUNCS video_reader = VIDEO_READER_FUNCS['decord'] def read_video(path, num_frames=16): frames, frame_indices, video_duration = video_reader( path, num_frames, 'rand', max_num_frames=-1 ) video = test_transform(frames) return video.permute(1, 0, 2, 3).unsqueeze(0) do_sample=False num_beams=5 max_length=30 def inference(image, task_type, instruction): if task_type == 'Video Captioning': text = [''] text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device) model = MODEL else: raise NotImplemented image = read_video(image) with torch.autocast(device_type=device_type, dtype=torch.bfloat16, enabled=True): out = model(image=image, text=text_input, mode='generate', return_dict=True, max_length=max_length, do_sample=do_sample, num_beams=num_beams) if 'Captioning' in task_type: for i, o in enumerate(out): res = tokenizer.decode(o) response = res.split('')[1].replace(pad_token, '').replace('', '').replace(eos_token, '') # skip_special_tokens=True else: for o in out: o_list = o.tolist() response = tokenizer.decode(o_list).split(special_answer_token)[1].replace(pad_token, '').replace('', '').replace(eos_token, '') # skip_special_tokens=True return response inputs = [gr.Video(source="upload", type="filepath"), gr.inputs.Radio(choices=['Video Captioning'], type="value", default="Video Captioning", label="Task"), gr.inputs.Textbox(lines=1, label="Instruction")] outputs = ['text'] examples = [ ['examples/videos/video7014.mp4', 'Video Captioning', None], ['examples/videos/video7017.mp4', 'Video Captioning', None], ['examples/videos/video7019.mp4', 'Video Captioning', None], ['examples/videos/video7021.mp4', 'Video Captioning', None], ['examples/videos/video7021.mp4', 'Video Captioning', None], ] title = "eP-ALM for Video-Text tasks" description = "Gradio Demo for eP-ALM. For this demo, we use 2.7B OPT. As the model runs on CPUs and float16 mixed precision is not supported on CPUs, the generation can take up to 2 mins." article = "

Paper | Github Repo

" io = gr.Interface(fn=inference, inputs=inputs, outputs=outputs, title=title, description=description, article=article, examples=examples, cache_examples=False) io.launch()