File size: 10,630 Bytes
3eb682b 06253c3 3eb682b 2f68cd3 3eb682b 06253c3 4668a73 3eb682b ce7469b 3eb682b aff9f36 2dc23ea 3eb682b 78ad2cd 3eb682b 78ad2cd 3eb682b 78ad2cd 3eb682b 78ad2cd 902be23 78ad2cd ce7469b 78ad2cd ce7469b 78ad2cd ce7469b 902be23 78ad2cd 3eb682b 78ad2cd 3eb682b 78ad2cd 3eb682b ce7469b 3eb682b ce7469b 3eb682b ce7469b 3eb682b ce7469b 3eb682b ce7469b 3eb682b ce7469b 3eb682b ce7469b 3eb682b 902be23 3eb682b 02eb18e 902be23 02eb18e 902be23 02eb18e 902be23 ce7469b 02eb18e 78ad2cd ce7469b 02eb18e 3eb682b ce7469b 3eb682b ce7469b 3eb682b 0fb65d4 3eb682b 78ad2cd 3eb682b 78ad2cd 3eb682b 78ad2cd 3eb682b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import os
os.system('cd TimeSformer;'
'pip install .; cd ..')
os.system('ls -l')
os.system('pwd')
import os, sys
sys.path.append("/home/user/app/TimeSformer/")
import timesformer
import torch
from torchvision import transforms
from transformers import AutoTokenizer
from PIL import Image
import json
import os
from torchvision import transforms
from models.epalm import ePALM
import os
from transformers import AutoTokenizer
# import ruamel_yaml as yaml
from ruamel.yaml import YAML
import torch
import gradio as gr
import torchaudio
yaml=YAML(typ='safe')
use_cuda = torch.cuda.is_available()
device = torch.device('cuda') if use_cuda else torch.device('cpu')
device_type = 'cuda' if use_cuda else 'cpu'
## Load model
### Captioning
config = 'configs/image/ePALM_caption.yaml'
# config = yaml.load(open(config, 'r'), Loader=yaml.Loader)
config = yaml.load(open(config, 'r'))
text_model = 'facebook/opt-2.7b'
vision_model_name = 'vit_base_patch16_224'
# text_model = 'facebook/opt-6.7b'
# vision_model_name = 'vit_large_patch16_224'
start_layer_idx = 19
end_layer_idx = 31
low_cpu = True
model_caption = ePALM(opt_model_name=text_model,
vision_model_name=vision_model_name,
use_vis_prefix=True,
start_layer_idx=start_layer_idx,
end_layer_idx=end_layer_idx,
return_hidden_state_vision=True,
config=config,
low_cpu=low_cpu
)
print("Model Built")
model_caption.to(device)
checkpoint_path = 'checkpoints/float32/ePALM_caption/checkpoint_best.pth'
# checkpoint_path = '/data/mshukor/logs/eplam/models/accelerate/ePALM_pt_L_acc_caption/checkpoint_best.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu')
state_dict = checkpoint['model']
msg = model_caption.load_state_dict(state_dict,strict=False)
model_caption.bfloat16()
# ###### VQA
# config = 'configs/image/ePALM_vqa.yaml'
# config = yaml.load(open(config, 'r'))
# start_layer_idx = 19
# end_layer_idx = 31
# low_cpu = True
# model_vqa = ePALM(opt_model_name=text_model,
# vision_model_name=vision_model_name,
# use_vis_prefix=True,
# start_layer_idx=start_layer_idx,
# end_layer_idx=end_layer_idx,
# return_hidden_state_vision=True,
# config=config,
# low_cpu=low_cpu
# )
# print("Model Built")
# model_vqa.to(device)
checkpoint_path = 'checkpoints/float32/ePALM_vqa/checkpoint_best.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu')
state_dict_vqa = checkpoint['model']
# msg = model_vqa.load_state_dict(state_dict,strict=False)
# model_vqa.bfloat16()
# Video Captioning
checkpoint_path = 'checkpoints/float32/ePALM_video_caption_msrvtt/checkpoint_best.pth'
# checkpoint_path = '/data/mshukor/logs/eplam/models/accelerate/ePALM_pt_L_acc_caption/checkpoint_best.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu')
state_dict_video_caption = checkpoint['model']
# Video QA
checkpoint_path = 'checkpoints/float32/ePALM_video_qa_msrvtt/checkpoint_best.pth'
# checkpoint_path = '/data/mshukor/logs/eplam/models/accelerate/ePALM_pt_L_acc_caption/checkpoint_best.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu')
state_dict_video_qa = checkpoint['model']
# Audio Captioning
checkpoint_path = 'checkpoints/float32/ePALM_audio_caption/checkpoint_best.pth'
# checkpoint_path = '/data/mshukor/logs/eplam/models/accelerate/ePALM_pt_L_acc_caption/checkpoint_best.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu')
state_dict_audio_caption = checkpoint['model']
## Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(text_model, use_fast=False)
eos_token = tokenizer.eos_token
pad_token = tokenizer.pad_token
special_answer_token = '</a>'
special_tokens_dict = {'additional_special_tokens': [special_answer_token]}
tokenizer.add_special_tokens(special_tokens_dict)
image_size = 224
normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
transform = transforms.Compose([
transforms.Resize((image_size,image_size),interpolation=Image.BICUBIC),
transforms.ToTensor(),
normalize,
])
type_transform = transforms.Lambda(lambda x: x.float().div(255.0))
test_transform = transforms.Compose([
transforms.Resize((image_size,image_size),interpolation=Image.BICUBIC),
type_transform,
normalize,
])
from dataset.video_utils import VIDEO_READER_FUNCS
video_reader = VIDEO_READER_FUNCS['decord']
def read_video(path, num_frames=16):
frames, frame_indices, video_duration = video_reader(
path, num_frames, 'rand', max_num_frames=-1
)
video = test_transform(frames)
return video
def read_audio(path):
melbins = 128
target_length = 1024
skip_norm = False
norm_mean = -4.2677393
norm_std = 4.5689974
waveform, sr = torchaudio.load(path)
waveform = waveform - waveform.mean()
# audio
fbank = torchaudio.compliance.kaldi.fbank(waveform, htk_compat=True, sample_frequency=sr, use_energy=False,
window_type='hanning', num_mel_bins=melbins, dither=0.0,
frame_shift=10)
n_frames = fbank.shape[0]
p = target_length - n_frames
# cut and pad
if p > 0:
m = torch.nn.ZeroPad2d((0, 0, 0, p))
fbank = m(fbank)
elif p < 0:
fbank = fbank[0:target_length, :]
# SpecAug, not do for eval set
fbank = torch.transpose(fbank, 0, 1)
# this is just to satisfy new torchaudio version, which only accept [1, freq, time]
fbank = fbank.unsqueeze(0)
# squeeze it back, it is just a trick to satisfy new torchaudio version
fbank = fbank.squeeze(0)
fbank = torch.transpose(fbank, 0, 1)
# normalize the input for both training and test
if not skip_norm:
fbank = (fbank - norm_mean) / (norm_std * 2)
# skip normalization the input if you are trying to get the normalization stats.
else:
pass
audio = fbank
return audio
do_sample=False
num_beams=3
max_length=30
def inference(image, audio, video, task_type, instruction):
if task_type == 'Image Captioning':
text = ['']
text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device)
model = model_caption
elif task_type == 'Video Captioning':
text = ['']
text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device)
model_caption = model_caption.load_state_dict(state_dict_video_caption,strict=False)
model = model_caption
elif task_type == 'Audio Captioning':
text = ['']
text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device)
model_caption = model_caption.load_state_dict(state_dict_audio_caption,strict=False)
model = model_caption
elif task_type == 'Visual Question Answering':
question = instruction+'?'+special_answer_token
text_input = tokenizer(question, padding='longest', return_tensors="pt").to(device)
model_caption = model_caption.load_state_dict(state_dict_vqa,strict=False)
model = model_caption
elif task_type == 'Visual Question Answering':
question = instruction+'?'+special_answer_token
text_input = tokenizer(question, padding='longest', return_tensors="pt").to(device)
model_caption = model_caption.load_state_dict(state_dict_video_qa,strict=False)
model = model_caption
else:
raise NotImplemented
if "Video" in task_type:
image = read_video(image)
elif "Audio" in task_type:
image = read_audio(image)
else:
image = transform(image)
image = image.to(device,non_blocking=True).unsqueeze(0)
with torch.autocast(device_type=device_type, dtype=torch.bfloat16, enabled=True):
out = model(image=image, text=text_input, mode='generate', return_dict=True, max_length=max_length,
do_sample=do_sample, num_beams=num_beams)
if 'Captioning' in task_type:
for i, o in enumerate(out):
res = tokenizer.decode(o)
response = res.split('</s>')[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
else:
for o in out:
o_list = o.tolist()
response = tokenizer.decode(o_list).split(special_answer_token)[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
return response
inputs = [gr.inputs.Image(type='pil'), gr.Audio(source="upload", type="filepath"), gr.Video(source="upload", type="filepath"), gr.inputs.Radio(choices=['Image Captioning', 'Video Captioning', 'Audio Captioning', "Visual Question Answering", "Visual Grounding", "General", "General Video"], type="value", default="Image Captioning", label="Task"), gr.inputs.Textbox(lines=1, label="Instruction")]
outputs = ['text']
examples = [
['examples/images/soccer.jpg', None, None, 'Image Captioning', None],
['examples/images/ski.jpg', None, None, 'Visual Question Answering', 'what does the woman wearing black do?'],
['examples/images/banana.jpg', None, None, 'Image Captioning', None],
['examples/images/skateboard.jpg', None, None, 'Visual Question Answering', 'what is on top of the skateboard?'],
['examples/images/baseball.jpg', None, None, 'Image Captioning', None],
[None, None, 'examples/videos/video7014.mp4', 'Video Captioning', None],
[None, None, 'examples/videos/video7017.mp4', 'Video Captioning', None],
[None, None, 'examples/videos/video7019.mp4', 'Video Captioning', None],
[None, None, 'examples/videos/video7021.mp4', 'Video Captioning', None],
[None, None, 'examples/videos/video7021.mp4', 'Video Captioning', None],
[None, 'examples/audios/6cS0FsUM-cQ.wav', None, 'Audio Captioning', None],
[None, 'examples/audios/AJtNitYMa1I.wav', None, 'Audio Captioning', None],
]
title = "eP-ALM"
description = "Gradio Demo for eP-ALM: "
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2303.11403' target='_blank'>Paper</a> | <a href='https://github.com/mshukor/eP-ALM' target='_blank'>Github Repo</a></p>"
io = gr.Interface(fn=inference, inputs=inputs, outputs=outputs,
title=title, description=description, article=article, examples=examples, cache_examples=False)
io.launch() |