File size: 10,509 Bytes
3eb682b
 
 
06253c3
3eb682b
 
2f68cd3
3eb682b
06253c3
 
 
4668a73
3eb682b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce7469b
3eb682b
 
 
 
 
 
aff9f36
2dc23ea
3eb682b
 
 
78ad2cd
3eb682b
 
 
 
 
 
 
 
 
 
 
 
 
ea7ec0b
3eb682b
 
 
 
 
 
 
 
 
ea7ec0b
3eb682b
 
 
 
 
ea7ec0b
78ad2cd
ea7ec0b
78ad2cd
ce7469b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78ad2cd
 
 
 
ce7469b
 
78ad2cd
 
ce7469b
902be23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78ad2cd
 
3eb682b
 
 
 
 
 
 
78ad2cd
3eb682b
78ad2cd
 
3eb682b
 
 
 
 
 
 
 
 
 
 
ce7469b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3eb682b
ce7469b
 
 
 
 
 
 
3eb682b
ce7469b
 
3eb682b
ce7469b
 
 
 
 
 
3eb682b
ce7469b
3eb682b
ce7469b
 
 
 
 
 
3eb682b
 
ce7469b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3eb682b
 
 
 
 
902be23
3eb682b
 
 
 
 
 
 
ea7ec0b
902be23
 
 
26fbfb5
 
902be23
 
 
26fbfb5
 
902be23
 
 
26fbfb5
 
 
78ad2cd
 
 
26fbfb5
 
3eb682b
 
26fbfb5
3eb682b
ce7469b
3eb682b
ce7469b
3eb682b
 
 
 
 
 
 
0fb65d4
3eb682b
 
 
 
78ad2cd
 
 
 
 
 
 
 
 
3eb682b
 
 
 
 
 
 
 
 
78ad2cd
 
 
3eb682b
 
 
 
78ad2cd
3eb682b
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import os

os.system('cd TimeSformer;'
          'pip install .; cd ..')

os.system('ls -l')
os.system('pwd')

import os, sys
sys.path.append("/home/user/app/TimeSformer/")

import timesformer


import torch
from torchvision import transforms


from transformers import AutoTokenizer


from PIL import Image
import json 
import os

from torchvision import transforms

from models.epalm import ePALM

import os

from transformers import AutoTokenizer

# import ruamel_yaml as yaml
from ruamel.yaml import YAML

import torch
import gradio as gr

import torchaudio 

yaml=YAML(typ='safe')



use_cuda = torch.cuda.is_available()
device = torch.device('cuda') if use_cuda else torch.device('cpu')
device_type = 'cuda' if use_cuda else 'cpu'

## Load model

### Captioning 
config = 'configs/image/ePALM_caption.yaml'
# config = yaml.load(open(config, 'r'), Loader=yaml.Loader)
config = yaml.load(open(config, 'r'))

text_model = 'facebook/opt-2.7b' 
vision_model_name = 'vit_base_patch16_224'

# text_model = 'facebook/opt-6.7b' 
# vision_model_name = 'vit_large_patch16_224'

start_layer_idx = 19
end_layer_idx = 31
low_cpu = True 
MODEL = ePALM(opt_model_name=text_model, 
               vision_model_name=vision_model_name, 
               use_vis_prefix=True, 
               start_layer_idx=start_layer_idx, 
               end_layer_idx=end_layer_idx, 
               return_hidden_state_vision=True, 
               config=config,
               low_cpu=low_cpu
)
print("Model Built")
MODEL.to(device)

checkpoint_path = 'checkpoints/float32/ePALM_caption/checkpoint_best.pth'
# checkpoint_path = '/data/mshukor/logs/eplam/models/accelerate/ePALM_pt_L_acc_caption/checkpoint_best.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu') 
state_dict = checkpoint['model']
msg = MODEL.load_state_dict(state_dict,strict=False)  

MODEL.bfloat16()

# ###### VQA
# config = 'configs/image/ePALM_vqa.yaml'
# config = yaml.load(open(config, 'r'))

# start_layer_idx = 19
# end_layer_idx = 31
# low_cpu = True 
# model_vqa = ePALM(opt_model_name=text_model, 
#                vision_model_name=vision_model_name, 
#                use_vis_prefix=True, 
#                start_layer_idx=start_layer_idx, 
#                end_layer_idx=end_layer_idx, 
#                return_hidden_state_vision=True, 
#                config=config,
#                low_cpu=low_cpu
# )
# print("Model Built")
# model_vqa.to(device)


checkpoint_path = 'checkpoints/float32/ePALM_vqa/checkpoint_best.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu') 
state_dict_vqa = checkpoint['model']
# msg = model_vqa.load_state_dict(state_dict,strict=False)  


# model_vqa.bfloat16()



# Video Captioning
checkpoint_path = 'checkpoints/float32/ePALM_video_caption_msrvtt/checkpoint_best.pth'
# checkpoint_path = '/data/mshukor/logs/eplam/models/accelerate/ePALM_pt_L_acc_caption/checkpoint_best.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu') 
state_dict_video_caption = checkpoint['model']

# Video QA
checkpoint_path = 'checkpoints/float32/ePALM_video_qa_msrvtt/checkpoint_best.pth'
# checkpoint_path = '/data/mshukor/logs/eplam/models/accelerate/ePALM_pt_L_acc_caption/checkpoint_best.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu') 
state_dict_video_qa = checkpoint['model']


# Audio Captioning
checkpoint_path = 'checkpoints/float32/ePALM_audio_caption/checkpoint_best.pth'
# checkpoint_path = '/data/mshukor/logs/eplam/models/accelerate/ePALM_pt_L_acc_caption/checkpoint_best.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu') 
state_dict_audio_caption = checkpoint['model']




## Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(text_model, use_fast=False)
eos_token = tokenizer.eos_token
pad_token = tokenizer.pad_token

special_answer_token = '</a>'

special_tokens_dict = {'additional_special_tokens': [special_answer_token]}
tokenizer.add_special_tokens(special_tokens_dict)


image_size = 224
normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))

transform = transforms.Compose([
            transforms.Resize((image_size,image_size),interpolation=Image.BICUBIC),
            transforms.ToTensor(),
            normalize,
            ])  

type_transform = transforms.Lambda(lambda x: x.float().div(255.0))
test_transform = transforms.Compose([
    transforms.Resize((image_size,image_size),interpolation=Image.BICUBIC),
    type_transform,
    normalize,
    ])  
from dataset.video_utils import VIDEO_READER_FUNCS
video_reader = VIDEO_READER_FUNCS['decord']

def read_video(path, num_frames=16):
        

    frames, frame_indices, video_duration = video_reader(
        path, num_frames, 'rand', max_num_frames=-1
    )
    video = test_transform(frames)

    return video

def read_audio(path):
        
    melbins = 128
    target_length = 1024
    skip_norm = False
    norm_mean = -4.2677393
    norm_std = 4.5689974

    waveform, sr = torchaudio.load(path)
    waveform = waveform - waveform.mean()

    # audio 
    fbank = torchaudio.compliance.kaldi.fbank(waveform, htk_compat=True, sample_frequency=sr, use_energy=False,
                                                window_type='hanning', num_mel_bins=melbins, dither=0.0, 
                                                frame_shift=10) 
                
    n_frames = fbank.shape[0]

    p = target_length - n_frames

    # cut and pad
    if p > 0:
        m = torch.nn.ZeroPad2d((0, 0, 0, p))
        fbank = m(fbank)
    elif p < 0:
        fbank = fbank[0:target_length, :]




    # SpecAug, not do for eval set

    fbank = torch.transpose(fbank, 0, 1)
    # this is just to satisfy new torchaudio version, which only accept [1, freq, time]
    fbank = fbank.unsqueeze(0)



    # squeeze it back, it is just a trick to satisfy new torchaudio version
    fbank = fbank.squeeze(0)
    fbank = torch.transpose(fbank, 0, 1)


    # normalize the input for both training and test
    if not skip_norm:
        fbank = (fbank - norm_mean) / (norm_std * 2)
    # skip normalization the input if you are trying to get the normalization stats.
    else:
        pass


    audio = fbank

    return audio

do_sample=False
num_beams=3
max_length=30





def inference(image, audio, video, task_type, instruction):

    if task_type == 'Image Captioning':
        text = ['']  
        text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device) 
        model = MODEL
    elif task_type == 'Video Captioning':
        text = ['']  
        text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device) 
        msg = MODEL.load_state_dict(state_dict_video_caption,strict=False)  
        model = MODEL
    elif task_type == 'Audio Captioning':
        text = ['']  
        text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device) 
        msg = MODEL.load_state_dict(state_dict_audio_caption,strict=False)  
        model = MODEL
    elif task_type == 'Visual Question Answering':
        question = instruction+'?'+special_answer_token
        text_input = tokenizer(question, padding='longest', return_tensors="pt").to(device) 
        msg = MODEL.load_state_dict(state_dict_vqa,strict=False)  
        model = MODEL
        print(msg)
    elif task_type == 'Visual Question Answering':
        question = instruction+'?'+special_answer_token
        text_input = tokenizer(question, padding='longest', return_tensors="pt").to(device) 
        msg = MODEL.load_state_dict(state_dict_video_qa,strict=False)  
        model = MODEL
    else:
        raise NotImplemented
    
    if "Video" in task_type:
        image = read_video(image)
    elif "Audio" in task_type:
        image = read_audio(image)
    else:
        image = transform(image)
        image = image.to(device,non_blocking=True).unsqueeze(0)




    with torch.autocast(device_type=device_type, dtype=torch.bfloat16, enabled=True):

        out = model(image=image, text=text_input, mode='generate', return_dict=True, max_length=max_length, 
                    do_sample=do_sample, num_beams=num_beams)


    if 'Captioning' in task_type:
        for i, o in enumerate(out):
            res = tokenizer.decode(o)
            response = res.split('</s>')[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
    else:
        for o in out:
            o_list = o.tolist()
            response = tokenizer.decode(o_list).split(special_answer_token)[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True

    return response


inputs = [gr.inputs.Image(type='pil'), gr.Audio(source="upload", type="filepath"), gr.Video(source="upload", type="filepath"), gr.inputs.Radio(choices=['Image Captioning', 'Video Captioning', 'Audio Captioning', "Visual Question Answering", "Visual Grounding", "General", "General Video"], type="value", default="Image Captioning", label="Task"), gr.inputs.Textbox(lines=1, label="Instruction")]
outputs = ['text']
examples = [
    ['examples/images/soccer.jpg', None, None, 'Image Captioning', None],
    ['examples/images/ski.jpg', None, None, 'Visual Question Answering', 'what does the woman wearing black do?'],
    ['examples/images/banana.jpg', None, None, 'Image Captioning', None],
    ['examples/images/skateboard.jpg', None, None, 'Visual Question Answering', 'what is on top of the skateboard?'],
    ['examples/images/baseball.jpg', None, None, 'Image Captioning', None],
    [None, None, 'examples/videos/video7014.mp4', 'Video Captioning', None], 
    [None, None, 'examples/videos/video7017.mp4', 'Video Captioning', None], 
    [None, None, 'examples/videos/video7019.mp4', 'Video Captioning', None], 
    [None, None, 'examples/videos/video7021.mp4', 'Video Captioning', None], 
    [None, None, 'examples/videos/video7021.mp4', 'Video Captioning', None], 
    [None, 'examples/audios/6cS0FsUM-cQ.wav', None, 'Audio Captioning', None],
    [None, 'examples/audios/AJtNitYMa1I.wav', None, 'Audio Captioning', None],
]

title = "eP-ALM"
description = "Gradio Demo for eP-ALM: "
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2303.11403' target='_blank'>Paper</a> | <a href='https://github.com/mshukor/eP-ALM' target='_blank'>Github Repo</a></p>"

io = gr.Interface(fn=inference, inputs=inputs, outputs=outputs,
                  title=title, description=description, article=article, examples=examples, cache_examples=False)
io.launch()