File size: 20,294 Bytes
3eb682b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
import argparse
import os
import ruamel_yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import os, sys
sys.path.append(os.path.abspath('.')) # ~/ep-alm
from models.epalm import ePALM
from models.utils import freeze_whole_model, unfreeze_parameters, print_trainable_params_percentage
from models.utils import filter_state, filter_msg, exclude_list
from transformers import AutoTokenizer
import utils
import re
from tqdm import tqdm
from dataset.video_vqa import get_loader
from scheduler import create_scheduler
from optim import create_optimizer
from models.utils import filter_state, filter_msg, exclude_list
from accelerate import Accelerator
def train(model, data_loader, optimizer, tokenizer, epoch, warmup_steps, device, scheduler, config, accelerator=None):
# train
model.train()
metric_logger = utils.MetricLogger(delimiter=" ", accelerator=accelerator)
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('loss', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
config_optim = utils.AttrDict(config['optimizer'])
prompt_lr = config_optim.prompt_lr if hasattr(config_optim, 'prompt_lr') else None
connector_lr = config_optim.connector_lr if hasattr(config_optim, 'connector_lr') else None
vis_lr = config_optim.vis_lr if hasattr(config_optim, 'vis_lr') else None
text_lr = config_optim.text_lr if hasattr(config_optim, 'text_lr') else None
accelerator.print(vis_lr, text_lr, connector_lr, len(optimizer.param_groups))
if prompt_lr is not None:
metric_logger.add_meter('prompt_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Train Epoch: [{}]'.format(epoch)
print_freq = 50
step_size = 100
warmup_iterations = warmup_steps*step_size
lm_loss_weight = config.get('lm_loss_weight', 1)
special_answer_token = config.get('special_answer_token', None)
special_eo_answer_token = config.get('special_eo_answer_token', None)
eos_token = tokenizer.eos_token if special_eo_answer_token is None else special_eo_answer_token
for i, batch in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
image = batch['images'].to(device,non_blocking=True)
question = batch['sent']
answer = batch['answers']
questions_answers = []
if special_answer_token is not None:
questions_answers += [question[i] + "?" + special_answer_token + answer[i].replace('[SEP]','') + eos_token for i in range(len(question))]
else:
questions_answers += [question[i] + "</s>" + answer[i].replace('[SEP]','') + eos_token for i in range(len(question))]
questions_answers_input = tokenizer(questions_answers, padding='longest', return_tensors="pt").to(device)
answer_targets = questions_answers_input.input_ids.masked_fill(questions_answers_input.input_ids == tokenizer.pad_token_id, -100)
images = image
answer_output = model(image=images,
text=questions_answers_input,
labels = answer_targets,
return_dict = True,
mode='train',
reduction='none',
)
loss = answer_output.loss
loss = loss.sum()/image.size(0)
loss = loss*lm_loss_weight
optimizer.zero_grad()
accelerator.backward(loss)
optimizer.step()
metric_logger.update(loss=loss.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
if prompt_lr is not None:
metric_logger.update(prompt_lr=optimizer.param_groups[1]["lr"])
if i % print_freq == 0:
lrs = [g["lr"] for g in optimizer.param_groups]
accelerator.print(lrs)
if epoch==0 and i%step_size==0 and i<=warmup_iterations:
if scheduler is not None:
scheduler.step(i//step_size)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
accelerator.print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def predict(model, loader, tokenizer, device, dump_path=None, verbose=False, distributed=False,
special_answer_token=None, special_eo_answer_token=None, config=None, accelerator=None):
model.eval()
eos_token = tokenizer.eos_token if special_eo_answer_token is None else special_eo_answer_token
pad_token = tokenizer.pad_token
num_beams = config.get('num_beams', 1)
do_sample = config.get('do_sample', True)
accelerator.print("num_beams", num_beams, "do_sample", do_sample)
with torch.no_grad():
quesid2ans = {}
if verbose:
pbar = tqdm(total=len(loader), ncols=120, desc="Prediction")
for i, batch in enumerate(loader):
image = batch['images'].to(device,non_blocking=True)
question = batch['sent']
question_id = batch['question_ids']
if special_answer_token is not None:
question = [q+'?'+special_answer_token for q in question]
else:
question = [q+eos_token for q in question]
question_input = tokenizer(question, padding='longest', return_tensors="pt").to(device)
out = model(image=image, text=question_input, mode='generate', return_dict=True, max_length=30,
do_sample=do_sample, num_beams=num_beams)
for ques_id, o in zip(question_id, out):
o_list = o.tolist()
try:
if special_answer_token is not None:
response = tokenizer.decode(o_list).split(special_answer_token)[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
else:
response = tokenizer.decode(o_list).split('</s>')[2].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
except TypeError:
accelerator.print(o_list)
response = ' '
ques_id = ques_id
quesid2ans[ques_id] = response
if verbose:
pbar.update(1)
if verbose:
pbar.close()
if distributed:
dist.barrier()
qid2ans_list = utils.all_gather(quesid2ans)
if verbose:
quesid2ans = {}
for qid2ans in qid2ans_list:
for k, v in qid2ans.items():
quesid2ans[k] = v
if dump_path is not None:
evaluator = loader.evaluator
evaluator.dump_result(quesid2ans, dump_path)
return quesid2ans
def evaluate(model, data_loader, tokenizer, device,
distributed=False, special_answer_token=None, special_eo_answer_token=None, config=None, accelerator=None):
verbose = utils.is_main_process()
quesid2ans = predict(model, data_loader, tokenizer, device, verbose=verbose,
distributed=distributed, special_answer_token=special_answer_token,
special_eo_answer_token=special_eo_answer_token, config=config, accelerator=accelerator)
evaluator = data_loader.evaluator
acc_dict = {}
topk_score = evaluator.evaluate(quesid2ans, normalize_answer=True)
acc_dict['topk_score'] = topk_score
return acc_dict
def main(args, config):
if 'XDG_CACHE_HOME' in os.environ:
os.environ['TORCH_HOME'] = os.environ['XDG_CACHE_HOME']+'/torch'
else:
os.environ['TORCH_HOME'] = '~/.cache/torch'
args.distributed = False
accelerator = Accelerator()
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
start_epoch = 0
max_epoch = config['schedular']['epochs']
warmup_steps = config['schedular']['warmup_epochs']
#### Dataset ####
accelerator.print("Creating dataset")
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
else:
num_tasks = None
global_rank = None
num_workers = config.get('num_workers', 4)
train_topk = config.get('train_topk', -1)
valid_topk = config.get('valid_topk', -1)
data_dir = args.data_dir
args.image_size = config.get('image_res', 224)
args.use_data_augmentation = True
# video
args.num_frames = config.get('num_frames', 4)
args.as_images = config.get('as_images', True)
args.num_tries = config.get('num_tries', 1)
args.sample_type = config.get('sample_type', 'rand')
train_split = config.get('train_split', 'train')
val_split = config.get('val_split', 'val')
test_split = config.get('test_split', 'test')
train_loader = get_loader(
args,
split=train_split, mode='train', batch_size=config['batch_size_train'],
distributed=args.distributed,
workers=num_workers,
topk=train_topk,
data_dir=data_dir,
local_rank=global_rank, world_size=num_tasks, verbose=True
)
args.raw_label = False
accelerator.print('# len train loader:', len(train_loader))
accelerator.print(f'Building val loader')
val_loader = get_loader(
args,
split=val_split, mode='val', batch_size=config['batch_size_test'],
distributed=args.distributed,
workers=4,
topk=valid_topk,data_dir=data_dir,
local_rank=global_rank, world_size=num_tasks, verbose=True
)
accelerator.print('# len val loader:', len(val_loader))
accelerator.print(f'Building test loader')
test_loader = get_loader(
args,
split=test_split, mode='val', batch_size=config['batch_size_test'],
distributed=args.distributed,
workers=4,
topk=valid_topk,data_dir=data_dir,
local_rank=global_rank, world_size=num_tasks, verbose=True
)
accelerator.print('# len test loader:', len(test_loader))
#### Model ####
accelerator.print("Creating model")
start_layer_idx = config.get('start_layer_idx', 0)
end_layer_idx = config.get('end_layer_idx', 0)
vision_model_name = config.get('vision_model_name', args.vision_model)
tokenizer_name = config.get('tokenizer_name', args.text_model)
model = ePALM(opt_model_name = args.text_model,
vision_model_name = vision_model_name,
use_vis_prefix = True,
start_layer_idx = start_layer_idx,
end_layer_idx = end_layer_idx,
return_hidden_state_vision = True,
config=config,
low_cpu=args.low_cpu
)
model = model.to(device)
# tokenizer
if 'opt' in tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=False, local_files_only=True)
else:
raise NotImplemented
special_answer_token = config.get('special_answer_token', None)
special_eo_answer_token = config.get('special_eo_answer_token', None)
if special_answer_token is not None:
special_tokens_dict = {'additional_special_tokens': [special_answer_token]}
if special_eo_answer_token is not None:
special_tokens_dict['additional_special_tokens'] += [special_eo_answer_token]
tokenizer.add_special_tokens(special_tokens_dict)
accelerator.print("Adding special token:", special_tokens_dict)
accelerator.print(tokenizer)
arg_opt = utils.AttrDict(config['optimizer'])
optimizer = create_optimizer(arg_opt, model, config=config['optimizer'])
if hasattr(arg_opt, 'prompt_lr') and arg_opt.prompt_lr is not None:
accelerator.print('\tInitial other params params lr: %f' % optimizer.param_groups[0]['lr'])
accelerator.print('\tInitial prompt params lr: %f' % optimizer.param_groups[1]['lr'])
arg_sche = utils.AttrDict(config['schedular'])
lr_scheduler, _ = create_scheduler(arg_sche, optimizer)
if args.checkpoint:
checkpoint = torch.load(args.checkpoint, map_location='cpu')
state_dict = checkpoint['model']
msg = model.load_state_dict(state_dict,strict=False)
msg = filter_msg(msg, exclude_list)
accelerator.print('load checkpoint from %s'%args.checkpoint)
accelerator.print(msg)
if 'best_valid' in checkpoint:
accelerator.print("load best valid {} at epoch {}".format(checkpoint['best_valid'] , checkpoint['best_epoch'] ))
if args.resume:
model = model.to(device)
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
start_epoch = checkpoint['epoch']+1
accelerator.print(checkpoint.keys())
for p in optimizer.param_groups: # not necessay after torch 1.12.1
p['capturable'] = True
if 'best_valid' in checkpoint:
best_valid = checkpoint['best_valid']
best_epoch = checkpoint['best_epoch']
accelerator.print("load best valid {} at epoch {}".format(best_valid, best_epoch))
freeze_whole_model(model)
unfreeze_parameters(model, config)
print_trainable_params_percentage(model)
val_evaluator = val_loader.evaluator
test_evaluator = test_loader.evaluator
task = val_loader.task
device = accelerator.device
model, optimizer, train_loader, val_loader, test_loader, lr_scheduler = accelerator.prepare(
model, optimizer, train_loader, val_loader, test_loader, lr_scheduler
)
model = model.to(device)
test_loader.evaluator = test_evaluator
val_loader.evaluator = val_evaluator
test_loader.task = task
val_loader.task = task
accelerator.print("Start training")
start_time = time.time()
best_valid = 0.
best_epoch = 0
for epoch in range(start_epoch, max_epoch):
if epoch>0:
if lr_scheduler is not None:
lr_scheduler.step(epoch+warmup_steps)
if not args.evaluate:
if args.distributed:
train_loader.sampler.set_epoch(epoch)
train_stats = train(model, train_loader, optimizer, tokenizer, epoch, warmup_steps, device, lr_scheduler, config, accelerator=accelerator)
if args.evaluate:
break
score_dict = evaluate(model, val_loader, tokenizer, device, distributed=args.distributed,
special_answer_token=special_answer_token, special_eo_answer_token=special_eo_answer_token,
config=config, accelerator=accelerator)
accelerator.print(score_dict)
if utils.is_main_process():
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
}
with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
f.write(json.dumps(log_stats) + "\n")
if lr_scheduler is None:
lr_scheduler_state_dict = {}
else:
lr_scheduler_state_dict = lr_scheduler.state_dict()
## avoid memory issue with accelerator.get_state_dict
state_dict = accelerator.unwrap_model(model)
state_dict = state_dict.state_dict()
state_dict = filter_state(state_dict, exclude_list) # filter_state(model_without_ddp.state_dict(), exclude_list)
if state_dict is not None:
for k in state_dict:
if state_dict[k].dtype == torch.float16:
state_dict[k] = state_dict[k].float()
save_obj = {
'model': state_dict,
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler_state_dict,
'config': config,
'epoch': epoch,
'best_valid': best_valid,
'best_epoch': best_epoch,
}
if args.save_best:
valid_score = score_dict['topk_score'] * 100.
if valid_score > best_valid or epoch == 0:
best_valid = valid_score
best_epoch = epoch
save_obj['best_valid'] = best_valid
save_obj['best_epoch'] = best_epoch
accelerator.print("save best epoch:", best_epoch)
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth'))
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_last.pth'))
dist.barrier()
verbose = utils.is_main_process()
### test best model
if not args.evaluate:
checkpoint = torch.load(os.path.join(args.output_dir, 'checkpoint_best.pth'), map_location='cpu')
state_dict = checkpoint['model']
msg = model.module.load_state_dict(state_dict,strict=False)
msg = filter_msg(msg, exclude_list)
accelerator.print('load checkpoint for test from %s'%os.path.join(args.output_dir, 'checkpoint_best.pth'))
accelerator.print(msg)
print("best_epoch", checkpoint['best_epoch'], "best_valid", checkpoint['best_valid'])
print("best_epoch", best_epoch, "best_valid", best_valid)
quesid2ans = predict(model, test_loader, tokenizer, device, verbose=verbose,
distributed=args.distributed, special_answer_token=special_answer_token,
special_eo_answer_token=special_eo_answer_token, config=config, accelerator=accelerator)
evaluator = test_loader.evaluator
score_dict = evaluator.evaluate(quesid2ans, normalize_answer=True)
accelerator.print("Test accuracy:", score_dict)
if args.distributed:
dist.barrier()
exit()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
accelerator.print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/VQA.yaml')
parser.add_argument('--checkpoint', default='')
parser.add_argument('--output_dir', default='output/vqa')
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--text_model', default='facebook/opt-350m')
parser.add_argument('--vision_model', default='vit_base_patch16_224')
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', default=True, type=bool)
parser.add_argument('--data_dir', default='/data/mshukor/data')
parser.add_argument('--resume', action='store_true')
parser.add_argument('--save_best', action='store_true')
parser.add_argument('--low_cpu', action='store_true')
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
args.result_dir = os.path.join(args.output_dir, 'result')
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
Path(args.result_dir).mkdir(parents=True, exist_ok=True)
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
main(args, config) |