File size: 5,374 Bytes
3eb682b 06253c3 3eb682b 2f68cd3 3eb682b 06253c3 4668a73 3eb682b ce7469b 3eb682b aff9f36 2dc23ea 3eb682b 78ad2cd 3eb682b ea7ec0b 3eb682b ea7ec0b 3eb682b ea7ec0b 78ad2cd ea7ec0b 78ad2cd 0665edf 78ad2cd ce7469b 902be23 78ad2cd 3eb682b 78ad2cd 3eb682b 78ad2cd 3eb682b ce7469b 3eb682b 0665edf 3eb682b 902be23 3eb682b 0665edf 3eb682b ea7ec0b 902be23 26fbfb5 3eb682b 26fbfb5 0665edf 3eb682b 0fb65d4 3eb682b 78ad2cd 3eb682b e9b379d 3eb682b 0665edf c31cd36 0665edf 3eb682b f7812b1 3eb682b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import os
os.system('cd TimeSformer;'
'pip install .; cd ..')
os.system('ls -l')
os.system('pwd')
import os, sys
sys.path.append("/home/user/app/TimeSformer/")
import timesformer
import torch
from torchvision import transforms
from transformers import AutoTokenizer
from PIL import Image
import json
import os
from torchvision import transforms
from models.epalm import ePALM
import os
from transformers import AutoTokenizer
# import ruamel_yaml as yaml
from ruamel.yaml import YAML
import torch
import gradio as gr
import torchaudio
yaml=YAML(typ='safe')
use_cuda = torch.cuda.is_available()
device = torch.device('cuda') if use_cuda else torch.device('cpu')
device_type = 'cuda' if use_cuda else 'cpu'
## Load model
### Captioning
config = 'configs/image/ePALM_caption.yaml'
# config = yaml.load(open(config, 'r'), Loader=yaml.Loader)
config = yaml.load(open(config, 'r'))
text_model = 'facebook/opt-2.7b'
vision_model_name = 'vit_base_patch16_224'
# text_model = 'facebook/opt-6.7b'
# vision_model_name = 'vit_large_patch16_224'
start_layer_idx = 19
end_layer_idx = 31
low_cpu = True
MODEL = ePALM(opt_model_name=text_model,
vision_model_name=vision_model_name,
use_vis_prefix=True,
start_layer_idx=start_layer_idx,
end_layer_idx=end_layer_idx,
return_hidden_state_vision=True,
config=config,
low_cpu=low_cpu
)
print("Model Built")
MODEL.to(device)
checkpoint_path = 'checkpoints/float32/ePALM_caption/checkpoint_best.pth'
# checkpoint_path = '/data/mshukor/logs/eplam/models/accelerate/ePALM_pt_L_acc_caption/checkpoint_best.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu')
state_dict = checkpoint['model']
msg = MODEL.load_state_dict(state_dict,strict=False)
MODEL.bfloat16()
checkpoint_path = 'checkpoints/float32/ePALM_vqa/checkpoint_best.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu')
state_dict_vqa = checkpoint['model']
## Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(text_model, use_fast=False)
eos_token = tokenizer.eos_token
pad_token = tokenizer.pad_token
special_answer_token = '</a>'
special_tokens_dict = {'additional_special_tokens': [special_answer_token]}
tokenizer.add_special_tokens(special_tokens_dict)
image_size = 224
normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
transform = transforms.Compose([
transforms.Resize((image_size,image_size),interpolation=Image.BICUBIC),
transforms.ToTensor(),
normalize,
])
do_sample=False
num_beams=5
max_length=30
def inference(image, task_type, instruction):
if task_type == 'Image Captioning':
text = ['']
text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device)
model = MODEL
elif task_type == 'Visual Question Answering':
question = instruction+'?'+special_answer_token
text_input = tokenizer(question, padding='longest', return_tensors="pt").to(device)
msg = MODEL.load_state_dict(state_dict_vqa,strict=False)
model = MODEL
print(msg)
else:
raise NotImplemented
image = transform(image)
image = image.to(device,non_blocking=True).unsqueeze(0)
with torch.autocast(device_type=device_type, dtype=torch.bfloat16, enabled=True):
out = model(image=image, text=text_input, mode='generate', return_dict=True, max_length=max_length,
do_sample=do_sample, num_beams=num_beams)
if 'Captioning' in task_type:
for i, o in enumerate(out):
res = tokenizer.decode(o)
response = res.split('</s>')[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
else:
for o in out:
o_list = o.tolist()
response = tokenizer.decode(o_list).split(special_answer_token)[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
return response
inputs = [gr.inputs.Image(type='pil'), gr.inputs.Radio(choices=['Image Captioning', "Visual Question Answering",], type="value", default="Image Captioning", label="Task"), gr.inputs.Textbox(lines=1, label="Instruction")]
outputs = ['text']
examples = [
['examples/images/soccer.jpg', 'Image Captioning', None],
['examples/images/ski.jpg', 'Visual Question Answering', 'what does the woman do?'],
['examples/images/banana.jpg', 'Image Captioning', None],
['examples/images/skateboard.jpg', 'Visual Question Answering', 'what is the colour of the bird?'],
['examples/images/baseball.jpg', 'Image Captioning', None],
]
title = "eP-ALM"
description = "Gradio Demo for eP-ALM. For this demo, we use 2.7B OPT. As the model runs on CPUs and float16 mixed precision is not supported on CPUs, the generation can take up to 2 mins."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2303.11403' target='_blank'>Paper</a> | <a href='https://github.com/mshukor/eP-ALM' target='_blank'>Github Repo</a></p>"
io = gr.Interface(fn=inference, inputs=inputs, outputs=outputs,
title=title, description=description, article=article, examples=examples, cache_examples=False)
io.launch() |