File size: 5,374 Bytes
3eb682b
 
 
06253c3
3eb682b
 
2f68cd3
3eb682b
06253c3
 
 
4668a73
3eb682b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce7469b
3eb682b
 
 
 
 
 
aff9f36
2dc23ea
3eb682b
 
 
78ad2cd
3eb682b
 
 
 
 
 
 
 
 
 
 
 
 
ea7ec0b
3eb682b
 
 
 
 
 
 
 
 
ea7ec0b
3eb682b
 
 
 
 
ea7ec0b
78ad2cd
ea7ec0b
78ad2cd
0665edf
78ad2cd
 
 
 
ce7469b
902be23
 
 
78ad2cd
3eb682b
 
 
 
 
 
 
78ad2cd
3eb682b
78ad2cd
 
3eb682b
 
 
 
 
 
 
 
 
 
 
ce7469b
3eb682b
0665edf
3eb682b
 
 
902be23
3eb682b
 
0665edf
3eb682b
 
 
 
ea7ec0b
902be23
 
 
26fbfb5
 
 
3eb682b
 
26fbfb5
0665edf
 
3eb682b
 
 
 
0fb65d4
3eb682b
 
 
 
78ad2cd
 
 
 
 
 
 
 
 
3eb682b
 
 
 
e9b379d
3eb682b
 
0665edf
 
 
c31cd36
0665edf
3eb682b
 
 
f7812b1
3eb682b
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os

os.system('cd TimeSformer;'
          'pip install .; cd ..')

os.system('ls -l')
os.system('pwd')

import os, sys
sys.path.append("/home/user/app/TimeSformer/")

import timesformer


import torch
from torchvision import transforms


from transformers import AutoTokenizer


from PIL import Image
import json 
import os

from torchvision import transforms

from models.epalm import ePALM

import os

from transformers import AutoTokenizer

# import ruamel_yaml as yaml
from ruamel.yaml import YAML

import torch
import gradio as gr

import torchaudio 

yaml=YAML(typ='safe')



use_cuda = torch.cuda.is_available()
device = torch.device('cuda') if use_cuda else torch.device('cpu')
device_type = 'cuda' if use_cuda else 'cpu'

## Load model

### Captioning 
config = 'configs/image/ePALM_caption.yaml'
# config = yaml.load(open(config, 'r'), Loader=yaml.Loader)
config = yaml.load(open(config, 'r'))

text_model = 'facebook/opt-2.7b' 
vision_model_name = 'vit_base_patch16_224'

# text_model = 'facebook/opt-6.7b' 
# vision_model_name = 'vit_large_patch16_224'

start_layer_idx = 19
end_layer_idx = 31
low_cpu = True 
MODEL = ePALM(opt_model_name=text_model, 
               vision_model_name=vision_model_name, 
               use_vis_prefix=True, 
               start_layer_idx=start_layer_idx, 
               end_layer_idx=end_layer_idx, 
               return_hidden_state_vision=True, 
               config=config,
               low_cpu=low_cpu
)
print("Model Built")
MODEL.to(device)

checkpoint_path = 'checkpoints/float32/ePALM_caption/checkpoint_best.pth'
# checkpoint_path = '/data/mshukor/logs/eplam/models/accelerate/ePALM_pt_L_acc_caption/checkpoint_best.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu') 
state_dict = checkpoint['model']
msg = MODEL.load_state_dict(state_dict,strict=False)  

MODEL.bfloat16()




checkpoint_path = 'checkpoints/float32/ePALM_vqa/checkpoint_best.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu') 
state_dict_vqa = checkpoint['model']






## Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(text_model, use_fast=False)
eos_token = tokenizer.eos_token
pad_token = tokenizer.pad_token

special_answer_token = '</a>'

special_tokens_dict = {'additional_special_tokens': [special_answer_token]}
tokenizer.add_special_tokens(special_tokens_dict)


image_size = 224
normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))

transform = transforms.Compose([
            transforms.Resize((image_size,image_size),interpolation=Image.BICUBIC),
            transforms.ToTensor(),
            normalize,
            ])  


do_sample=False
num_beams=5
max_length=30





def inference(image, task_type, instruction):

    if task_type == 'Image Captioning':
        text = ['']  
        text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device) 
        model = MODEL
    elif task_type == 'Visual Question Answering':
        question = instruction+'?'+special_answer_token
        text_input = tokenizer(question, padding='longest', return_tensors="pt").to(device) 
        msg = MODEL.load_state_dict(state_dict_vqa,strict=False)  
        model = MODEL
        print(msg)
    else:
        raise NotImplemented
    
    image = transform(image)
    image = image.to(device,non_blocking=True).unsqueeze(0)




    with torch.autocast(device_type=device_type, dtype=torch.bfloat16, enabled=True):

        out = model(image=image, text=text_input, mode='generate', return_dict=True, max_length=max_length, 
                    do_sample=do_sample, num_beams=num_beams)


    if 'Captioning' in task_type:
        for i, o in enumerate(out):
            res = tokenizer.decode(o)
            response = res.split('</s>')[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
    else:
        for o in out:
            o_list = o.tolist()
            response = tokenizer.decode(o_list).split(special_answer_token)[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True

    return response


inputs = [gr.inputs.Image(type='pil'), gr.inputs.Radio(choices=['Image Captioning',  "Visual Question Answering",], type="value", default="Image Captioning", label="Task"), gr.inputs.Textbox(lines=1, label="Instruction")]
outputs = ['text']
examples = [
    ['examples/images/soccer.jpg',  'Image Captioning', None],
    ['examples/images/ski.jpg',  'Visual Question Answering', 'what does the woman do?'],
    ['examples/images/banana.jpg', 'Image Captioning', None],
    ['examples/images/skateboard.jpg',  'Visual Question Answering', 'what is the colour of the bird?'],
    ['examples/images/baseball.jpg', 'Image Captioning', None],
]

title = "eP-ALM"
description = "Gradio Demo for eP-ALM. For this demo, we use 2.7B OPT. As the model runs on CPUs and float16 mixed precision is not supported on CPUs, the generation can take up to 2 mins."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2303.11403' target='_blank'>Paper</a> | <a href='https://github.com/mshukor/eP-ALM' target='_blank'>Github Repo</a></p>"

io = gr.Interface(fn=inference, inputs=inputs, outputs=outputs,
                  title=title, description=description, article=article, examples=examples, cache_examples=False)
io.launch()