File size: 26,453 Bytes
3eb682b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import math
import numpy as np
import cv2
def clip_boxes_to_image(boxes, height, width):
"""
Clip the boxes with the height and width of the image size.
Args:
boxes (ndarray): bounding boxes to peform crop. The dimension is
`num boxes` x 4.
height (int): the height of the image.
width (int): the width of the image.
Returns:
boxes (ndarray): cropped bounding boxes.
"""
boxes[:, [0, 2]] = np.minimum(
width - 1.0, np.maximum(0.0, boxes[:, [0, 2]])
)
boxes[:, [1, 3]] = np.minimum(
height - 1.0, np.maximum(0.0, boxes[:, [1, 3]])
)
return boxes
def random_short_side_scale_jitter_list(images, min_size, max_size, boxes=None):
"""
Perform a spatial short scale jittering on the given images and
corresponding boxes.
Args:
images (list): list of images to perform scale jitter. Dimension is
`height` x `width` x `channel`.
min_size (int): the minimal size to scale the frames.
max_size (int): the maximal size to scale the frames.
boxes (list): optional. Corresponding boxes to images. Dimension is
`num boxes` x 4.
Returns:
(list): the list of scaled images with dimension of
`new height` x `new width` x `channel`.
(ndarray or None): the scaled boxes with dimension of
`num boxes` x 4.
"""
size = int(round(1.0 / np.random.uniform(1.0 / max_size, 1.0 / min_size)))
height = images[0].shape[0]
width = images[0].shape[1]
if (width <= height and width == size) or (
height <= width and height == size
):
return images, boxes
new_width = size
new_height = size
if width < height:
new_height = int(math.floor((float(height) / width) * size))
if boxes is not None:
boxes = [
proposal * float(new_height) / height for proposal in boxes
]
else:
new_width = int(math.floor((float(width) / height) * size))
if boxes is not None:
boxes = [proposal * float(new_width) / width for proposal in boxes]
return (
[
cv2.resize(
image, (new_width, new_height), interpolation=cv2.INTER_LINEAR
).astype(np.float32)
for image in images
],
boxes,
)
def scale(size, image):
"""
Scale the short side of the image to size.
Args:
size (int): size to scale the image.
image (array): image to perform short side scale. Dimension is
`height` x `width` x `channel`.
Returns:
(ndarray): the scaled image with dimension of
`height` x `width` x `channel`.
"""
height = image.shape[0]
width = image.shape[1]
if (width <= height and width == size) or (
height <= width and height == size
):
return image
new_width = size
new_height = size
if width < height:
new_height = int(math.floor((float(height) / width) * size))
else:
new_width = int(math.floor((float(width) / height) * size))
img = cv2.resize(
image, (new_width, new_height), interpolation=cv2.INTER_LINEAR
)
return img.astype(np.float32)
def scale_boxes(size, boxes, height, width):
"""
Scale the short side of the box to size.
Args:
size (int): size to scale the image.
boxes (ndarray): bounding boxes to peform scale. The dimension is
`num boxes` x 4.
height (int): the height of the image.
width (int): the width of the image.
Returns:
boxes (ndarray): scaled bounding boxes.
"""
if (width <= height and width == size) or (
height <= width and height == size
):
return boxes
new_width = size
new_height = size
if width < height:
new_height = int(math.floor((float(height) / width) * size))
boxes *= float(new_height) / height
else:
new_width = int(math.floor((float(width) / height) * size))
boxes *= float(new_width) / width
return boxes
def horizontal_flip_list(prob, images, order="CHW", boxes=None):
"""
Horizontally flip the list of image and optional boxes.
Args:
prob (float): probability to flip.
image (list): ilist of images to perform short side scale. Dimension is
`height` x `width` x `channel` or `channel` x `height` x `width`.
order (str): order of the `height`, `channel` and `width`.
boxes (list): optional. Corresponding boxes to images.
Dimension is `num boxes` x 4.
Returns:
(ndarray): the scaled image with dimension of
`height` x `width` x `channel`.
(list): optional. Corresponding boxes to images. Dimension is
`num boxes` x 4.
"""
_, width, _ = images[0].shape
if np.random.uniform() < prob:
if boxes is not None:
boxes = [flip_boxes(proposal, width) for proposal in boxes]
if order == "CHW":
out_images = []
for image in images:
image = np.asarray(image).swapaxes(2, 0)
image = image[::-1]
out_images.append(image.swapaxes(0, 2))
return out_images, boxes
elif order == "HWC":
return [cv2.flip(image, 1) for image in images], boxes
return images, boxes
def spatial_shift_crop_list(size, images, spatial_shift_pos, boxes=None):
"""
Perform left, center, or right crop of the given list of images.
Args:
size (int): size to crop.
image (list): ilist of images to perform short side scale. Dimension is
`height` x `width` x `channel` or `channel` x `height` x `width`.
spatial_shift_pos (int): option includes 0 (left), 1 (middle), and
2 (right) crop.
boxes (list): optional. Corresponding boxes to images.
Dimension is `num boxes` x 4.
Returns:
cropped (ndarray): the cropped list of images with dimension of
`height` x `width` x `channel`.
boxes (list): optional. Corresponding boxes to images. Dimension is
`num boxes` x 4.
"""
assert spatial_shift_pos in [0, 1, 2]
height = images[0].shape[0]
width = images[0].shape[1]
y_offset = int(math.ceil((height - size) / 2))
x_offset = int(math.ceil((width - size) / 2))
if height > width:
if spatial_shift_pos == 0:
y_offset = 0
elif spatial_shift_pos == 2:
y_offset = height - size
else:
if spatial_shift_pos == 0:
x_offset = 0
elif spatial_shift_pos == 2:
x_offset = width - size
cropped = [
image[y_offset : y_offset + size, x_offset : x_offset + size, :]
for image in images
]
assert cropped[0].shape[0] == size, "Image height not cropped properly"
assert cropped[0].shape[1] == size, "Image width not cropped properly"
if boxes is not None:
for i in range(len(boxes)):
boxes[i][:, [0, 2]] -= x_offset
boxes[i][:, [1, 3]] -= y_offset
return cropped, boxes
def CHW2HWC(image):
"""
Transpose the dimension from `channel` x `height` x `width` to
`height` x `width` x `channel`.
Args:
image (array): image to transpose.
Returns
(array): transposed image.
"""
return image.transpose([1, 2, 0])
def HWC2CHW(image):
"""
Transpose the dimension from `height` x `width` x `channel` to
`channel` x `height` x `width`.
Args:
image (array): image to transpose.
Returns
(array): transposed image.
"""
return image.transpose([2, 0, 1])
def color_jitter_list(
images, img_brightness=0, img_contrast=0, img_saturation=0
):
"""
Perform color jitter on the list of images.
Args:
images (list): list of images to perform color jitter.
img_brightness (float): jitter ratio for brightness.
img_contrast (float): jitter ratio for contrast.
img_saturation (float): jitter ratio for saturation.
Returns:
images (list): the jittered list of images.
"""
jitter = []
if img_brightness != 0:
jitter.append("brightness")
if img_contrast != 0:
jitter.append("contrast")
if img_saturation != 0:
jitter.append("saturation")
if len(jitter) > 0:
order = np.random.permutation(np.arange(len(jitter)))
for idx in range(0, len(jitter)):
if jitter[order[idx]] == "brightness":
images = brightness_list(img_brightness, images)
elif jitter[order[idx]] == "contrast":
images = contrast_list(img_contrast, images)
elif jitter[order[idx]] == "saturation":
images = saturation_list(img_saturation, images)
return images
def lighting_list(imgs, alphastd, eigval, eigvec, alpha=None):
"""
Perform AlexNet-style PCA jitter on the given list of images.
Args:
images (list): list of images to perform lighting jitter.
alphastd (float): jitter ratio for PCA jitter.
eigval (list): eigenvalues for PCA jitter.
eigvec (list[list]): eigenvectors for PCA jitter.
Returns:
out_images (list): the list of jittered images.
"""
if alphastd == 0:
return imgs
# generate alpha1, alpha2, alpha3
alpha = np.random.normal(0, alphastd, size=(1, 3))
eig_vec = np.array(eigvec)
eig_val = np.reshape(eigval, (1, 3))
rgb = np.sum(
eig_vec * np.repeat(alpha, 3, axis=0) * np.repeat(eig_val, 3, axis=0),
axis=1,
)
out_images = []
for img in imgs:
for idx in range(img.shape[0]):
img[idx] = img[idx] + rgb[2 - idx]
out_images.append(img)
return out_images
def color_normalization(image, mean, stddev):
"""
Perform color normalization on the image with the given mean and stddev.
Args:
image (array): image to perform color normalization.
mean (float): mean value to subtract.
stddev (float): stddev to devide.
"""
# Input image should in format of CHW
assert len(mean) == image.shape[0], "channel mean not computed properly"
assert len(stddev) == image.shape[0], "channel stddev not computed properly"
for idx in range(image.shape[0]):
image[idx] = image[idx] - mean[idx]
image[idx] = image[idx] / stddev[idx]
return image
def pad_image(image, pad_size, order="CHW"):
"""
Pad the given image with the size of pad_size.
Args:
image (array): image to pad.
pad_size (int): size to pad.
order (str): order of the `height`, `channel` and `width`.
Returns:
img (array): padded image.
"""
if order == "CHW":
img = np.pad(
image,
((0, 0), (pad_size, pad_size), (pad_size, pad_size)),
mode=str("constant"),
)
elif order == "HWC":
img = np.pad(
image,
((pad_size, pad_size), (pad_size, pad_size), (0, 0)),
mode=str("constant"),
)
return img
def horizontal_flip(prob, image, order="CHW"):
"""
Horizontally flip the image.
Args:
prob (float): probability to flip.
image (array): image to pad.
order (str): order of the `height`, `channel` and `width`.
Returns:
img (array): flipped image.
"""
assert order in ["CHW", "HWC"], "order {} is not supported".format(order)
if np.random.uniform() < prob:
if order == "CHW":
image = image[:, :, ::-1]
elif order == "HWC":
image = image[:, ::-1, :]
else:
raise NotImplementedError("Unknown order {}".format(order))
return image
def flip_boxes(boxes, im_width):
"""
Horizontally flip the boxes.
Args:
boxes (array): box to flip.
im_width (int): width of the image.
Returns:
boxes_flipped (array): flipped box.
"""
boxes_flipped = boxes.copy()
boxes_flipped[:, 0::4] = im_width - boxes[:, 2::4] - 1
boxes_flipped[:, 2::4] = im_width - boxes[:, 0::4] - 1
return boxes_flipped
def crop_boxes(boxes, x_offset, y_offset):
"""
Crop the boxes given the offsets.
Args:
boxes (array): boxes to crop.
x_offset (int): offset on x.
y_offset (int): offset on y.
"""
boxes[:, [0, 2]] = boxes[:, [0, 2]] - x_offset
boxes[:, [1, 3]] = boxes[:, [1, 3]] - y_offset
return boxes
def random_crop_list(images, size, pad_size=0, order="CHW", boxes=None):
"""
Perform random crop on a list of images.
Args:
images (list): list of images to perform random crop.
size (int): size to crop.
pad_size (int): padding size.
order (str): order of the `height`, `channel` and `width`.
boxes (list): optional. Corresponding boxes to images.
Dimension is `num boxes` x 4.
Returns:
cropped (ndarray): the cropped list of images with dimension of
`height` x `width` x `channel`.
boxes (list): optional. Corresponding boxes to images. Dimension is
`num boxes` x 4.
"""
# explicitly dealing processing per image order to avoid flipping images.
if pad_size > 0:
images = [
pad_image(pad_size=pad_size, image=image, order=order)
for image in images
]
# image format should be CHW.
if order == "CHW":
if images[0].shape[1] == size and images[0].shape[2] == size:
return images, boxes
height = images[0].shape[1]
width = images[0].shape[2]
y_offset = 0
if height > size:
y_offset = int(np.random.randint(0, height - size))
x_offset = 0
if width > size:
x_offset = int(np.random.randint(0, width - size))
cropped = [
image[:, y_offset : y_offset + size, x_offset : x_offset + size]
for image in images
]
assert cropped[0].shape[1] == size, "Image not cropped properly"
assert cropped[0].shape[2] == size, "Image not cropped properly"
elif order == "HWC":
if images[0].shape[0] == size and images[0].shape[1] == size:
return images, boxes
height = images[0].shape[0]
width = images[0].shape[1]
y_offset = 0
if height > size:
y_offset = int(np.random.randint(0, height - size))
x_offset = 0
if width > size:
x_offset = int(np.random.randint(0, width - size))
cropped = [
image[y_offset : y_offset + size, x_offset : x_offset + size, :]
for image in images
]
assert cropped[0].shape[0] == size, "Image not cropped properly"
assert cropped[0].shape[1] == size, "Image not cropped properly"
if boxes is not None:
boxes = [crop_boxes(proposal, x_offset, y_offset) for proposal in boxes]
return cropped, boxes
def center_crop(size, image):
"""
Perform center crop on input images.
Args:
size (int): size of the cropped height and width.
image (array): the image to perform center crop.
"""
height = image.shape[0]
width = image.shape[1]
y_offset = int(math.ceil((height - size) / 2))
x_offset = int(math.ceil((width - size) / 2))
cropped = image[y_offset : y_offset + size, x_offset : x_offset + size, :]
assert cropped.shape[0] == size, "Image height not cropped properly"
assert cropped.shape[1] == size, "Image width not cropped properly"
return cropped
# ResNet style scale jittering: randomly select the scale from
# [1/max_size, 1/min_size]
def random_scale_jitter(image, min_size, max_size):
"""
Perform ResNet style random scale jittering: randomly select the scale from
[1/max_size, 1/min_size].
Args:
image (array): image to perform random scale.
min_size (int): min size to scale.
max_size (int) max size to scale.
Returns:
image (array): scaled image.
"""
img_scale = int(
round(1.0 / np.random.uniform(1.0 / max_size, 1.0 / min_size))
)
image = scale(img_scale, image)
return image
def random_scale_jitter_list(images, min_size, max_size):
"""
Perform ResNet style random scale jittering on a list of image: randomly
select the scale from [1/max_size, 1/min_size]. Note that all the image
will share the same scale.
Args:
images (list): list of images to perform random scale.
min_size (int): min size to scale.
max_size (int) max size to scale.
Returns:
images (list): list of scaled image.
"""
img_scale = int(
round(1.0 / np.random.uniform(1.0 / max_size, 1.0 / min_size))
)
return [scale(img_scale, image) for image in images]
def random_sized_crop(image, size, area_frac=0.08):
"""
Perform random sized cropping on the given image. Random crop with size
8% - 100% image area and aspect ratio in [3/4, 4/3].
Args:
image (array): image to crop.
size (int): size to crop.
area_frac (float): area of fraction.
Returns:
(array): cropped image.
"""
for _ in range(0, 10):
height = image.shape[0]
width = image.shape[1]
area = height * width
target_area = np.random.uniform(area_frac, 1.0) * area
aspect_ratio = np.random.uniform(3.0 / 4.0, 4.0 / 3.0)
w = int(round(math.sqrt(float(target_area) * aspect_ratio)))
h = int(round(math.sqrt(float(target_area) / aspect_ratio)))
if np.random.uniform() < 0.5:
w, h = h, w
if h <= height and w <= width:
if height == h:
y_offset = 0
else:
y_offset = np.random.randint(0, height - h)
if width == w:
x_offset = 0
else:
x_offset = np.random.randint(0, width - w)
y_offset = int(y_offset)
x_offset = int(x_offset)
cropped = image[y_offset : y_offset + h, x_offset : x_offset + w, :]
assert (
cropped.shape[0] == h and cropped.shape[1] == w
), "Wrong crop size"
cropped = cv2.resize(
cropped, (size, size), interpolation=cv2.INTER_LINEAR
)
return cropped.astype(np.float32)
return center_crop(size, scale(size, image))
def lighting(img, alphastd, eigval, eigvec):
"""
Perform AlexNet-style PCA jitter on the given image.
Args:
image (array): list of images to perform lighting jitter.
alphastd (float): jitter ratio for PCA jitter.
eigval (array): eigenvalues for PCA jitter.
eigvec (list): eigenvectors for PCA jitter.
Returns:
img (tensor): the jittered image.
"""
if alphastd == 0:
return img
# generate alpha1, alpha2, alpha3.
alpha = np.random.normal(0, alphastd, size=(1, 3))
eig_vec = np.array(eigvec)
eig_val = np.reshape(eigval, (1, 3))
rgb = np.sum(
eig_vec * np.repeat(alpha, 3, axis=0) * np.repeat(eig_val, 3, axis=0),
axis=1,
)
for idx in range(img.shape[0]):
img[idx] = img[idx] + rgb[2 - idx]
return img
def random_sized_crop_list(images, size, crop_area_fraction=0.08):
"""
Perform random sized cropping on the given list of images. Random crop with
size 8% - 100% image area and aspect ratio in [3/4, 4/3].
Args:
images (list): image to crop.
size (int): size to crop.
area_frac (float): area of fraction.
Returns:
(list): list of cropped image.
"""
for _ in range(0, 10):
height = images[0].shape[0]
width = images[0].shape[1]
area = height * width
target_area = np.random.uniform(crop_area_fraction, 1.0) * area
aspect_ratio = np.random.uniform(3.0 / 4.0, 4.0 / 3.0)
w = int(round(math.sqrt(float(target_area) * aspect_ratio)))
h = int(round(math.sqrt(float(target_area) / aspect_ratio)))
if np.random.uniform() < 0.5:
w, h = h, w
if h <= height and w <= width:
if height == h:
y_offset = 0
else:
y_offset = np.random.randint(0, height - h)
if width == w:
x_offset = 0
else:
x_offset = np.random.randint(0, width - w)
y_offset = int(y_offset)
x_offset = int(x_offset)
croppsed_images = []
for image in images:
cropped = image[
y_offset : y_offset + h, x_offset : x_offset + w, :
]
assert (
cropped.shape[0] == h and cropped.shape[1] == w
), "Wrong crop size"
cropped = cv2.resize(
cropped, (size, size), interpolation=cv2.INTER_LINEAR
)
croppsed_images.append(cropped.astype(np.float32))
return croppsed_images
return [center_crop(size, scale(size, image)) for image in images]
def blend(image1, image2, alpha):
return image1 * alpha + image2 * (1 - alpha)
def grayscale(image):
"""
Convert the image to gray scale.
Args:
image (tensor): image to convert to gray scale. Dimension is
`channel` x `height` x `width`.
Returns:
img_gray (tensor): image in gray scale.
"""
# R -> 0.299, G -> 0.587, B -> 0.114.
img_gray = np.copy(image)
gray_channel = 0.299 * image[2] + 0.587 * image[1] + 0.114 * image[0]
img_gray[0] = gray_channel
img_gray[1] = gray_channel
img_gray[2] = gray_channel
return img_gray
def saturation(var, image):
"""
Perform color saturation on the given image.
Args:
var (float): variance.
image (array): image to perform color saturation.
Returns:
(array): image that performed color saturation.
"""
img_gray = grayscale(image)
alpha = 1.0 + np.random.uniform(-var, var)
return blend(image, img_gray, alpha)
def brightness(var, image):
"""
Perform color brightness on the given image.
Args:
var (float): variance.
image (array): image to perform color brightness.
Returns:
(array): image that performed color brightness.
"""
img_bright = np.zeros(image.shape).astype(image.dtype)
alpha = 1.0 + np.random.uniform(-var, var)
return blend(image, img_bright, alpha)
def contrast(var, image):
"""
Perform color contrast on the given image.
Args:
var (float): variance.
image (array): image to perform color contrast.
Returns:
(array): image that performed color contrast.
"""
img_gray = grayscale(image)
img_gray.fill(np.mean(img_gray[0]))
alpha = 1.0 + np.random.uniform(-var, var)
return blend(image, img_gray, alpha)
def saturation_list(var, images):
"""
Perform color saturation on the list of given images.
Args:
var (float): variance.
images (list): list of images to perform color saturation.
Returns:
(list): list of images that performed color saturation.
"""
alpha = 1.0 + np.random.uniform(-var, var)
out_images = []
for image in images:
img_gray = grayscale(image)
out_images.append(blend(image, img_gray, alpha))
return out_images
def brightness_list(var, images):
"""
Perform color brightness on the given list of images.
Args:
var (float): variance.
images (list): list of images to perform color brightness.
Returns:
(array): list of images that performed color brightness.
"""
alpha = 1.0 + np.random.uniform(-var, var)
out_images = []
for image in images:
img_bright = np.zeros(image.shape).astype(image.dtype)
out_images.append(blend(image, img_bright, alpha))
return out_images
def contrast_list(var, images):
"""
Perform color contrast on the given list of images.
Args:
var (float): variance.
images (list): list of images to perform color contrast.
Returns:
(array): image that performed color contrast.
"""
alpha = 1.0 + np.random.uniform(-var, var)
out_images = []
for image in images:
img_gray = grayscale(image)
img_gray.fill(np.mean(img_gray[0]))
out_images.append(blend(image, img_gray, alpha))
return out_images
def color_jitter(image, img_brightness=0, img_contrast=0, img_saturation=0):
"""
Perform color jitter on the given image.
Args:
image (array): image to perform color jitter.
img_brightness (float): jitter ratio for brightness.
img_contrast (float): jitter ratio for contrast.
img_saturation (float): jitter ratio for saturation.
Returns:
image (array): the jittered image.
"""
jitter = []
if img_brightness != 0:
jitter.append("brightness")
if img_contrast != 0:
jitter.append("contrast")
if img_saturation != 0:
jitter.append("saturation")
if len(jitter) > 0:
order = np.random.permutation(np.arange(len(jitter)))
for idx in range(0, len(jitter)):
if jitter[order[idx]] == "brightness":
image = brightness(img_brightness, image)
elif jitter[order[idx]] == "contrast":
image = contrast(img_contrast, image)
elif jitter[order[idx]] == "saturation":
image = saturation(img_saturation, image)
return image
def revert_scaled_boxes(size, boxes, img_height, img_width):
"""
Revert scaled input boxes to match the original image size.
Args:
size (int): size of the cropped image.
boxes (array): shape (num_boxes, 4).
img_height (int): height of original image.
img_width (int): width of original image.
Returns:
reverted_boxes (array): boxes scaled back to the original image size.
"""
scaled_aspect = np.min([img_height, img_width])
scale_ratio = scaled_aspect / size
reverted_boxes = boxes * scale_ratio
return reverted_boxes
|