File size: 11,690 Bytes
3eb682b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.

import os
import random
import torch
import torch.utils.data
from fvcore.common.file_io import PathManager

import timesformer.utils.logging as logging

from . import decoder as decoder
from . import utils as utils
from . import video_container as container
from .build import DATASET_REGISTRY
logger = logging.get_logger(__name__)


@DATASET_REGISTRY.register()
class Kinetics(torch.utils.data.Dataset):
    """
    Kinetics video loader. Construct the Kinetics video loader, then sample
    clips from the videos. For training and validation, a single clip is
    randomly sampled from every video with random cropping, scaling, and
    flipping. For testing, multiple clips are uniformaly sampled from every
    video with uniform cropping. For uniform cropping, we take the left, center,
    and right crop if the width is larger than height, or take top, center, and
    bottom crop if the height is larger than the width.
    """

    def __init__(self, cfg, mode, num_retries=10):
        """
        Construct the Kinetics video loader with a given csv file. The format of
        the csv file is:
        ```
        path_to_video_1 label_1
        path_to_video_2 label_2
        ...
        path_to_video_N label_N
        ```
        Args:
            cfg (CfgNode): configs.
            mode (string): Options includes `train`, `val`, or `test` mode.
                For the train and val mode, the data loader will take data
                from the train or val set, and sample one clip per video.
                For the test mode, the data loader will take data from test set,
                and sample multiple clips per video.
            num_retries (int): number of retries.
        """
        # Only support train, val, and test mode.
        assert mode in [
            "train",
            "val",
            "test",
        ], "Split '{}' not supported for Kinetics".format(mode)
        self.mode = mode
        self.cfg = cfg

        self._video_meta = {}
        self._num_retries = num_retries
        # For training or validation mode, one single clip is sampled from every
        # video. For testing, NUM_ENSEMBLE_VIEWS clips are sampled from every
        # video. For every clip, NUM_SPATIAL_CROPS is cropped spatially from
        # the frames.
        if self.mode in ["train", "val"]:
            self._num_clips = 1
        elif self.mode in ["test"]:
            self._num_clips = (
                cfg.TEST.NUM_ENSEMBLE_VIEWS * cfg.TEST.NUM_SPATIAL_CROPS
            )

        logger.info("Constructing Kinetics {}...".format(mode))
        self._construct_loader()

    def _construct_loader(self):
        """
        Construct the video loader.
        """
        path_to_file = os.path.join(
            self.cfg.DATA.PATH_TO_DATA_DIR, "{}.csv".format(self.mode)
        )
        assert PathManager.exists(path_to_file), "{} dir not found".format(
            path_to_file
        )

        self._path_to_videos = []
        self._labels = []
        self._spatial_temporal_idx = []
        with PathManager.open(path_to_file, "r") as f:
            for clip_idx, path_label in enumerate(f.read().splitlines()):
                assert (
                    len(path_label.split(self.cfg.DATA.PATH_LABEL_SEPARATOR))
                    == 2
                )
                path, label = path_label.split(
                    self.cfg.DATA.PATH_LABEL_SEPARATOR
                )
                for idx in range(self._num_clips):
                    self._path_to_videos.append(
                        os.path.join(self.cfg.DATA.PATH_PREFIX, path)
                    )
                    self._labels.append(int(label))
                    self._spatial_temporal_idx.append(idx)
                    self._video_meta[clip_idx * self._num_clips + idx] = {}
        assert (
            len(self._path_to_videos) > 0
        ), "Failed to load Kinetics split {} from {}".format(
            self._split_idx, path_to_file
        )
        logger.info(
            "Constructing kinetics dataloader (size: {}) from {}".format(
                len(self._path_to_videos), path_to_file
            )
        )

    def __getitem__(self, index):
        """
        Given the video index, return the list of frames, label, and video
        index if the video can be fetched and decoded successfully, otherwise
        repeatly find a random video that can be decoded as a replacement.
        Args:
            index (int): the video index provided by the pytorch sampler.
        Returns:
            frames (tensor): the frames of sampled from the video. The dimension
                is `channel` x `num frames` x `height` x `width`.
            label (int): the label of the current video.
            index (int): if the video provided by pytorch sampler can be
                decoded, then return the index of the video. If not, return the
                index of the video replacement that can be decoded.
        """
        short_cycle_idx = None
        # When short cycle is used, input index is a tupple.
        if isinstance(index, tuple):
            index, short_cycle_idx = index

        if self.mode in ["train", "val"]:
            # -1 indicates random sampling.
            temporal_sample_index = -1
            spatial_sample_index = -1
            min_scale = self.cfg.DATA.TRAIN_JITTER_SCALES[0]
            max_scale = self.cfg.DATA.TRAIN_JITTER_SCALES[1]
            crop_size = self.cfg.DATA.TRAIN_CROP_SIZE
            if short_cycle_idx in [0, 1]:
                crop_size = int(
                    round(
                        self.cfg.MULTIGRID.SHORT_CYCLE_FACTORS[short_cycle_idx]
                        * self.cfg.MULTIGRID.DEFAULT_S
                    )
                )
            if self.cfg.MULTIGRID.DEFAULT_S > 0:
                # Decreasing the scale is equivalent to using a larger "span"
                # in a sampling grid.
                min_scale = int(
                    round(
                        float(min_scale)
                        * crop_size
                        / self.cfg.MULTIGRID.DEFAULT_S
                    )
                )
        elif self.mode in ["test"]:
            temporal_sample_index = (
                self._spatial_temporal_idx[index]
                // self.cfg.TEST.NUM_SPATIAL_CROPS
            )
            # spatial_sample_index is in [0, 1, 2]. Corresponding to left,
            # center, or right if width is larger than height, and top, middle,
            # or bottom if height is larger than width.
            spatial_sample_index = (
                (
                    self._spatial_temporal_idx[index]
                    % self.cfg.TEST.NUM_SPATIAL_CROPS
                )
                if self.cfg.TEST.NUM_SPATIAL_CROPS > 1
                else 1
            )
            min_scale, max_scale, crop_size = (
                [self.cfg.DATA.TEST_CROP_SIZE] * 3
                if self.cfg.TEST.NUM_SPATIAL_CROPS > 1
                else [self.cfg.DATA.TRAIN_JITTER_SCALES[0]] * 2
                + [self.cfg.DATA.TEST_CROP_SIZE]
            )
            # The testing is deterministic and no jitter should be performed.
            # min_scale, max_scale, and crop_size are expect to be the same.
            assert len({min_scale, max_scale}) == 1
        else:
            raise NotImplementedError(
                "Does not support {} mode".format(self.mode)
            )
        sampling_rate = utils.get_random_sampling_rate(
            self.cfg.MULTIGRID.LONG_CYCLE_SAMPLING_RATE,
            self.cfg.DATA.SAMPLING_RATE,
        )
        # Try to decode and sample a clip from a video. If the video can not be
        # decoded, repeatly find a random video replacement that can be decoded.
        for i_try in range(self._num_retries):
            video_container = None
            try:
                video_container = container.get_video_container(
                    self._path_to_videos[index],
                    self.cfg.DATA_LOADER.ENABLE_MULTI_THREAD_DECODE,
                    self.cfg.DATA.DECODING_BACKEND,
                )
            except Exception as e:
                logger.info(
                    "Failed to load video from {} with error {}".format(
                        self._path_to_videos[index], e
                    )
                )
            # Select a random video if the current video was not able to access.
            if video_container is None:
                logger.warning(
                    "Failed to meta load video idx {} from {}; trial {}".format(
                        index, self._path_to_videos[index], i_try
                    )
                )
                if self.mode not in ["test"] and i_try > self._num_retries // 2:
                    # let's try another one
                    index = random.randint(0, len(self._path_to_videos) - 1)
                continue

            # Decode video. Meta info is used to perform selective decoding.
            frames = decoder.decode(
                video_container,
                sampling_rate,
                self.cfg.DATA.NUM_FRAMES,
                temporal_sample_index,
                self.cfg.TEST.NUM_ENSEMBLE_VIEWS,
                video_meta=self._video_meta[index],
                target_fps=self.cfg.DATA.TARGET_FPS,
                backend=self.cfg.DATA.DECODING_BACKEND,
                max_spatial_scale=min_scale,
            )

            # If decoding failed (wrong format, video is too short, and etc),
            # select another video.
            if frames is None:
                logger.warning(
                    "Failed to decode video idx {} from {}; trial {}".format(
                        index, self._path_to_videos[index], i_try
                    )
                )
                if self.mode not in ["test"] and i_try > self._num_retries // 2:
                    # let's try another one
                    index = random.randint(0, len(self._path_to_videos) - 1)
                continue


            label = self._labels[index]

            # Perform color normalization.
            frames = utils.tensor_normalize(
                frames, self.cfg.DATA.MEAN, self.cfg.DATA.STD
            )

            # T H W C -> C T H W.
            frames = frames.permute(3, 0, 1, 2)
            # Perform data augmentation.
            frames = utils.spatial_sampling(
                frames,
                spatial_idx=spatial_sample_index,
                min_scale=min_scale,
                max_scale=max_scale,
                crop_size=crop_size,
                random_horizontal_flip=self.cfg.DATA.RANDOM_FLIP,
                inverse_uniform_sampling=self.cfg.DATA.INV_UNIFORM_SAMPLE,
            )


            if not self.cfg.MODEL.ARCH in ['vit']:
                frames = utils.pack_pathway_output(self.cfg, frames)
            else:
                # Perform temporal sampling from the fast pathway.
                frames = torch.index_select(
                     frames,
                     1,
                     torch.linspace(
                         0, frames.shape[1] - 1, self.cfg.DATA.NUM_FRAMES

                     ).long(),
                )

            return frames, label, index, {}
        else:
            raise RuntimeError(
                "Failed to fetch video after {} retries.".format(
                    self._num_retries
                )
            )

    def __len__(self):
        """
        Returns:
            (int): the number of videos in the dataset.
        """
        return len(self._path_to_videos)