File size: 10,292 Bytes
3eb682b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import json
import numpy as np
import os
import random
from itertools import chain as chain
import torch
import torch.utils.data
from fvcore.common.file_io import PathManager
import timesformer.utils.logging as logging
from . import utils as utils
from .build import DATASET_REGISTRY
logger = logging.get_logger(__name__)
@DATASET_REGISTRY.register()
class Ssv2(torch.utils.data.Dataset):
"""
Something-Something v2 (SSV2) video loader. Construct the SSV2 video loader,
then sample clips from the videos. For training and validation, a single
clip is randomly sampled from every video with random cropping, scaling, and
flipping. For testing, multiple clips are uniformaly sampled from every
video with uniform cropping. For uniform cropping, we take the left, center,
and right crop if the width is larger than height, or take top, center, and
bottom crop if the height is larger than the width.
"""
def __init__(self, cfg, mode, num_retries=10):
"""
Load Something-Something V2 data (frame paths, labels, etc. ) to a given
Dataset object. The dataset could be downloaded from Something-Something
official website (https://20bn.com/datasets/something-something).
Please see datasets/DATASET.md for more information about the data format.
Args:
cfg (CfgNode): configs.
mode (string): Options includes `train`, `val`, or `test` mode.
For the train and val mode, the data loader will take data
from the train or val set, and sample one clip per video.
For the test mode, the data loader will take data from test set,
and sample multiple clips per video.
num_retries (int): number of retries for reading frames from disk.
"""
# Only support train, val, and test mode.
assert mode in [
"train",
"val",
"test",
], "Split '{}' not supported for Something-Something V2".format(mode)
self.mode = mode
self.cfg = cfg
self._video_meta = {}
self._num_retries = num_retries
# For training or validation mode, one single clip is sampled from every
# video. For testing, NUM_ENSEMBLE_VIEWS clips are sampled from every
# video. For every clip, NUM_SPATIAL_CROPS is cropped spatially from
# the frames.
if self.mode in ["train", "val"]:
self._num_clips = 1
elif self.mode in ["test"]:
self._num_clips = (
cfg.TEST.NUM_ENSEMBLE_VIEWS * cfg.TEST.NUM_SPATIAL_CROPS
)
logger.info("Constructing Something-Something V2 {}...".format(mode))
self._construct_loader()
def _construct_loader(self):
"""
Construct the video loader.
"""
# Loading label names.
with PathManager.open(
os.path.join(
self.cfg.DATA.PATH_TO_DATA_DIR,
"something-something-v2-labels.json",
),
"r",
) as f:
label_dict = json.load(f)
# Loading labels.
label_file = os.path.join(
self.cfg.DATA.PATH_TO_DATA_DIR,
"something-something-v2-{}.json".format(
"train" if self.mode == "train" else "validation"
),
)
with PathManager.open(label_file, "r") as f:
label_json = json.load(f)
self._video_names = []
self._labels = []
for video in label_json:
video_name = video["id"]
template = video["template"]
template = template.replace("[", "")
template = template.replace("]", "")
label = int(label_dict[template])
self._video_names.append(video_name)
self._labels.append(label)
path_to_file = os.path.join(
self.cfg.DATA.PATH_TO_DATA_DIR,
"{}.csv".format("train" if self.mode == "train" else "val"),
)
assert PathManager.exists(path_to_file), "{} dir not found".format(
path_to_file
)
self._path_to_videos, _ = utils.load_image_lists(
path_to_file, self.cfg.DATA.PATH_PREFIX
)
assert len(self._path_to_videos) == len(self._video_names), (
len(self._path_to_videos),
len(self._video_names),
)
# From dict to list.
new_paths, new_labels = [], []
for index in range(len(self._video_names)):
if self._video_names[index] in self._path_to_videos:
new_paths.append(self._path_to_videos[self._video_names[index]])
new_labels.append(self._labels[index])
self._labels = new_labels
self._path_to_videos = new_paths
# Extend self when self._num_clips > 1 (during testing).
self._path_to_videos = list(
chain.from_iterable(
[[x] * self._num_clips for x in self._path_to_videos]
)
)
self._labels = list(
chain.from_iterable([[x] * self._num_clips for x in self._labels])
)
self._spatial_temporal_idx = list(
chain.from_iterable(
[
range(self._num_clips)
for _ in range(len(self._path_to_videos))
]
)
)
logger.info(
"Something-Something V2 dataloader constructed "
" (size: {}) from {}".format(
len(self._path_to_videos), path_to_file
)
)
def __getitem__(self, index):
"""
Given the video index, return the list of frames, label, and video
index if the video frames can be fetched.
Args:
index (int): the video index provided by the pytorch sampler.
Returns:
frames (tensor): the frames of sampled from the video. The dimension
is `channel` x `num frames` x `height` x `width`.
label (int): the label of the current video.
index (int): the index of the video.
"""
short_cycle_idx = None
# When short cycle is used, input index is a tupple.
if isinstance(index, tuple):
index, short_cycle_idx = index
if self.mode in ["train", "val"]: #or self.cfg.MODEL.ARCH in ['resformer', 'vit']:
# -1 indicates random sampling.
spatial_sample_index = -1
min_scale = self.cfg.DATA.TRAIN_JITTER_SCALES[0]
max_scale = self.cfg.DATA.TRAIN_JITTER_SCALES[1]
crop_size = self.cfg.DATA.TRAIN_CROP_SIZE
if short_cycle_idx in [0, 1]:
crop_size = int(
round(
self.cfg.MULTIGRID.SHORT_CYCLE_FACTORS[short_cycle_idx]
* self.cfg.MULTIGRID.DEFAULT_S
)
)
if self.cfg.MULTIGRID.DEFAULT_S > 0:
# Decreasing the scale is equivalent to using a larger "span"
# in a sampling grid.
min_scale = int(
round(
float(min_scale)
* crop_size
/ self.cfg.MULTIGRID.DEFAULT_S
)
)
elif self.mode in ["test"]:
# spatial_sample_index is in [0, 1, 2]. Corresponding to left,
# center, or right if width is larger than height, and top, middle,
# or bottom if height is larger than width.
spatial_sample_index = (
self._spatial_temporal_idx[index]
% self.cfg.TEST.NUM_SPATIAL_CROPS
)
if self.cfg.TEST.NUM_SPATIAL_CROPS == 1:
spatial_sample_index = 1
min_scale, max_scale, crop_size = [self.cfg.DATA.TEST_CROP_SIZE] * 3
# The testing is deterministic and no jitter should be performed.
# min_scale, max_scale, and crop_size are expect to be the same.
assert len({min_scale, max_scale, crop_size}) == 1
else:
raise NotImplementedError(
"Does not support {} mode".format(self.mode)
)
label = self._labels[index]
num_frames = self.cfg.DATA.NUM_FRAMES
video_length = len(self._path_to_videos[index])
seg_size = float(video_length - 1) / num_frames
seq = []
for i in range(num_frames):
start = int(np.round(seg_size * i))
end = int(np.round(seg_size * (i + 1)))
if self.mode == "train":
seq.append(random.randint(start, end))
else:
seq.append((start + end) // 2)
frames = torch.as_tensor(
utils.retry_load_images(
[self._path_to_videos[index][frame] for frame in seq],
self._num_retries,
)
)
# Perform color normalization.
frames = utils.tensor_normalize(
frames, self.cfg.DATA.MEAN, self.cfg.DATA.STD
)
# T H W C -> C T H W.
frames = frames.permute(3, 0, 1, 2)
frames = utils.spatial_sampling(
frames,
spatial_idx=spatial_sample_index,
min_scale=min_scale,
max_scale=max_scale,
crop_size=crop_size,
random_horizontal_flip=self.cfg.DATA.RANDOM_FLIP,
inverse_uniform_sampling=self.cfg.DATA.INV_UNIFORM_SAMPLE,
)
#if not self.cfg.RESFORMER.ACTIVE:
if not self.cfg.MODEL.ARCH in ['vit']:
frames = utils.pack_pathway_output(self.cfg, frames)
else:
# Perform temporal sampling from the fast pathway.
frames = torch.index_select(
frames,
1,
torch.linspace(
0, frames.shape[1] - 1, self.cfg.DATA.NUM_FRAMES
).long(),
)
return frames, label, index, {}
def __len__(self):
"""
Returns:
(int): the number of videos in the dataset.
"""
return len(self._path_to_videos)
|