File size: 4,772 Bytes
3eb682b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
"""
Modified from https://github.com/m-bain/frozen-in-time/blob/22a91d78405ec6032fdf521ae1ff5573358e632f/base/base_dataset.py
"""
import random
import av
import decord
import torch
import numpy as np
import math
# decord.bridge.set_bridge("torch")

from decord.bridge import to_torch 

def pts_to_secs(pts: int, time_base: float, start_pts: int) -> float:
    """
    Converts a present time with the given time base and start_pts offset to seconds.

    Returns:
        time_in_seconds (float): The corresponding time in seconds.

    https://github.com/facebookresearch/pytorchvideo/blob/main/pytorchvideo/data/utils.py#L54-L64
    """
    if pts == math.inf:
        return math.inf

    return int(pts - start_pts) * time_base


def get_pyav_video_duration(video_reader):
    video_stream = video_reader.streams.video[0]
    video_duration = pts_to_secs(
        video_stream.duration,
        video_stream.time_base,
        video_stream.start_time
    )
    return float(video_duration)


def get_frame_indices_by_fps():
    pass


def get_frame_indices(num_frames, vlen, sample='rand', fix_start=None, input_fps=1, max_num_frames=-1):
    if sample in ["rand", "middle"]:
        acc_samples = min(num_frames, vlen)
        # split the video into `acc_samples` intervals, and sample from each interval.
        intervals = np.linspace(start=0, stop=vlen, num=acc_samples + 1).astype(int)
        ranges = []
        for idx, interv in enumerate(intervals[:-1]):
            ranges.append((interv, intervals[idx + 1] - 1))
        if sample == 'rand':
            try:
                frame_indices = [random.choice(range(x[0], x[1])) for x in ranges]
            except:
                frame_indices = np.random.permutation(vlen)[:acc_samples]
                frame_indices.sort()
                frame_indices = list(frame_indices)
        elif fix_start is not None:
            frame_indices = [x[0] + fix_start for x in ranges]
        elif sample == 'middle':
            frame_indices = [(x[0] + x[1]) // 2 for x in ranges]
        else:
            raise NotImplementedError

        if len(frame_indices) < num_frames:  # padded with last frame
            padded_frame_indices = [frame_indices[-1]] * num_frames
            padded_frame_indices[:len(frame_indices)] = frame_indices
            frame_indices = padded_frame_indices
    elif "fps" in sample:  # fps0.5, sequentially sample frames at 0.5 fps
        output_fps = float(sample[3:])
        duration = float(vlen) / input_fps
        delta = 1 / output_fps  # gap between frames, this is also the clip length each frame represents
        frame_seconds = np.arange(0 + delta / 2, duration + delta / 2, delta)
        frame_indices = np.around(frame_seconds * input_fps).astype(int)
        frame_indices = [e for e in frame_indices if e < vlen]
        if max_num_frames > 0 and len(frame_indices) > max_num_frames:
            frame_indices = frame_indices[:max_num_frames]
            # frame_indices = np.linspace(0 + delta / 2, duration + delta / 2, endpoint=False, num=max_num_frames)
    else:
        raise ValueError
    return frame_indices


def read_frames_av(video_path, num_frames, sample='rand', fix_start=None, max_num_frames=-1):
    reader = av.open(video_path)
    frames = [torch.from_numpy(f.to_rgb().to_ndarray()) for f in reader.decode(video=0)]
    vlen = len(frames)
    duration = get_pyav_video_duration(reader)
    fps = vlen / float(duration)
    frame_indices = get_frame_indices(
        num_frames, vlen, sample=sample, fix_start=fix_start,
        input_fps=fps, max_num_frames=max_num_frames
    )
    frames = torch.stack([frames[idx] for idx in frame_indices])  # (T, H, W, C), torch.uint8
    frames = frames.permute(0, 3, 1, 2)  # (T, C, H, W), torch.uint8
    return frames, frame_indices, duration

# decord.bridge.set_bridge("torch")
def read_frames_decord(video_path, num_frames, sample='rand', fix_start=None, max_num_frames=-1):
    video_reader = decord.VideoReader(video_path, num_threads=1)
    vlen = len(video_reader)
    fps = video_reader.get_avg_fps()
    duration = vlen / float(fps)
    frame_indices = get_frame_indices(
        num_frames, vlen, sample=sample, fix_start=fix_start,
        input_fps=fps, max_num_frames=max_num_frames
    )
    frames = video_reader.get_batch(frame_indices)  # (T, H, W, C), torch.uint8
    frames = to_torch(frames)
    # try:
    #     print(type(frames))
    #     frames = frames.asnumpy()
    #     frames = torch.from_numpy(frames)
    # except:
    #     print("expt", type(frames))
    #     pass
    frames = frames.permute(0, 3, 1, 2)  # (T, C, H, W), torch.uint8
    return frames, frame_indices, duration


VIDEO_READER_FUNCS = {
    'av': read_frames_av,
    'decord': read_frames_decord
}