File size: 53,184 Bytes
3eb682b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
""" Vision Transformer (ViT) in PyTorch

A PyTorch implement of Vision Transformers as described in:

'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale'
    - https://arxiv.org/abs/2010.11929

`How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers`
    - https://arxiv.org/abs/2106.10270

The official jax code is released and available at https://github.com/google-research/vision_transformer

Acknowledgments:
* The paper authors for releasing code and weights, thanks!
* I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out
for some einops/einsum fun
* Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT
* Bert reference code checks against Huggingface Transformers and Tensorflow Bert

Hacked together by / Copyright 2020, Ross Wightman
"""
import math
import logging
from functools import partial
from collections import OrderedDict
from typing import Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from timm.models.helpers import build_model_with_cfg, resolve_pretrained_cfg, named_apply, adapt_input_conv, checkpoint_seq
from timm.models.layers import PatchEmbed, Mlp, DropPath, trunc_normal_, lecun_normal_
from timm.models.registry import register_model

_logger = logging.getLogger(__name__)


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 0, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
        'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
        'first_conv': 'patch_embed.proj', 'classifier': 'head',
        **kwargs
    }


default_cfgs = {
    # patch models (weights from official Google JAX impl)
    'vit_tiny_patch16_224': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/'
            'Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'),
    'vit_tiny_patch16_384': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/'
            'Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
        input_size=(3, 384, 384), crop_pct=1.0),
    'vit_small_patch32_224': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/'
            'S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'),
    'vit_small_patch32_384': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/'
            'S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
        input_size=(3, 384, 384), crop_pct=1.0),
    'vit_small_patch16_224': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/'
            'S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'),
    'vit_small_patch16_384': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/'
            'S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
        input_size=(3, 384, 384), crop_pct=1.0),
    'vit_base_patch32_224': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/'
            'B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'),
    'vit_base_patch32_384': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/'
            'B_32-i21k-300ep-lr_0.001-aug_light1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
        input_size=(3, 384, 384), crop_pct=1.0),
    'vit_base_patch16_224': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/'
            'B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz'),
    'vit_base_patch16_384': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/'
            'B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz',
        input_size=(3, 384, 384), crop_pct=1.0),
    'vit_base_patch8_224': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/'
            'B_8-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz'),
    'vit_large_patch32_224': _cfg(
        url='',  # no official model weights for this combo, only for in21k
        ),
    'vit_large_patch32_384': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p32_384-9b920ba8.pth',
        input_size=(3, 384, 384), crop_pct=1.0),
    'vit_large_patch16_224': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/'
            'L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz'),
    'vit_large_patch16_384': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/'
            'L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz',
        input_size=(3, 384, 384), crop_pct=1.0),

    'vit_large_patch14_224': _cfg(url=''),
    'vit_huge_patch14_224': _cfg(url=''),
    'vit_giant_patch14_224': _cfg(url=''),
    'vit_gigantic_patch14_224': _cfg(url=''),


    # patch models, imagenet21k (weights from official Google JAX impl)
    'vit_tiny_patch16_224_in21k': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0.npz',
        num_classes=21843),
    'vit_small_patch32_224_in21k': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz',
        num_classes=21843),
    'vit_small_patch16_224_in21k': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz',
        num_classes=21843),
    'vit_base_patch32_224_in21k': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0.npz',
        num_classes=21843),
    'vit_base_patch16_224_in21k': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz',
        num_classes=21843),
    'vit_base_patch8_224_in21k': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/B_8-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz',
        num_classes=21843),
    'vit_large_patch32_224_in21k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth',
        num_classes=21843),
    'vit_large_patch16_224_in21k': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1.npz',
        num_classes=21843),
    'vit_huge_patch14_224_in21k': _cfg(
        url='https://storage.googleapis.com/vit_models/imagenet21k/ViT-H_14.npz',
        hf_hub_id='timm/vit_huge_patch14_224_in21k',
        num_classes=21843),

    # SAM trained models (https://arxiv.org/abs/2106.01548)
    'vit_base_patch32_224_sam': _cfg(
        url='https://storage.googleapis.com/vit_models/sam/ViT-B_32.npz'),
    'vit_base_patch16_224_sam': _cfg(
        url='https://storage.googleapis.com/vit_models/sam/ViT-B_16.npz'),

    # DINO pretrained - https://arxiv.org/abs/2104.14294 (no classifier head, for fine-tune only)
    'vit_small_patch16_224_dino': _cfg(
        url='https://dl.fbaipublicfiles.com/dino/dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
    'vit_small_patch8_224_dino': _cfg(
        url='https://dl.fbaipublicfiles.com/dino/dino_deitsmall8_pretrain/dino_deitsmall8_pretrain.pth',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
    'vit_base_patch16_224_dino': _cfg(
        url='https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
    'vit_base_patch8_224_dino': _cfg(
        url='https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),


    # ViT ImageNet-21K-P pretraining by MILL
    'vit_base_patch16_224_miil_in21k': _cfg(
        url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/vit_base_patch16_224_in21k_miil.pth',
        mean=(0, 0, 0), std=(1, 1, 1), crop_pct=0.875, interpolation='bilinear', num_classes=11221,
    ),
    'vit_base_patch16_224_miil': _cfg(
        url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm'
            '/vit_base_patch16_224_1k_miil_84_4.pth',
        mean=(0, 0, 0), std=(1, 1, 1), crop_pct=0.875, interpolation='bilinear',
    ),

    'vit_base_patch16_rpn_224': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_base_patch16_rpn_224-sw-3b07e89d.pth'),

    # experimental (may be removed)
    'vit_base_patch32_plus_256': _cfg(url='', input_size=(3, 256, 256), crop_pct=0.95),
    'vit_base_patch16_plus_240': _cfg(url='', input_size=(3, 240, 240), crop_pct=0.95),
    'vit_small_patch16_36x1_224': _cfg(url=''),
    'vit_small_patch16_18x2_224': _cfg(url=''),
    'vit_base_patch16_18x2_224': _cfg(url=''),
}


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
        super().__init__()
        assert dim % num_heads == 0, 'dim should be divisible by num_heads'
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)   # make torchscript happy (cannot use tensor as tuple)

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class LayerScale(nn.Module):
    def __init__(self, dim, init_values=1e-5, inplace=False):
        super().__init__()
        self.inplace = inplace
        self.gamma = nn.Parameter(init_values * torch.ones(dim))

    def forward(self, x):
        return x.mul_(self.gamma) if self.inplace else x * self.gamma


class Block(nn.Module):

    def __init__(
            self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None,
            drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
        self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        self.norm2 = norm_layer(dim)
        self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop)
        self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
        self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x))))
        x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
        return x


class ResPostBlock(nn.Module):

    def __init__(
            self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None,
            drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.init_values = init_values

        self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
        self.norm1 = norm_layer(dim)
        self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop)
        self.norm2 = norm_layer(dim)
        self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        self.init_weights()

    def init_weights(self):
        # NOTE this init overrides that base model init with specific changes for the block type
        if self.init_values is not None:
            nn.init.constant_(self.norm1.weight, self.init_values)
            nn.init.constant_(self.norm2.weight, self.init_values)

    def forward(self, x):
        x = x + self.drop_path1(self.norm1(self.attn(x)))
        x = x + self.drop_path2(self.norm2(self.mlp(x)))
        return x


class ParallelBlock(nn.Module):

    def __init__(
            self, dim, num_heads, num_parallel=2, mlp_ratio=4., qkv_bias=False, init_values=None,
            drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.num_parallel = num_parallel
        self.attns = nn.ModuleList()
        self.ffns = nn.ModuleList()
        for _ in range(num_parallel):
            self.attns.append(nn.Sequential(OrderedDict([
                ('norm', norm_layer(dim)),
                ('attn', Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)),
                ('ls', LayerScale(dim, init_values=init_values) if init_values else nn.Identity()),
                ('drop_path', DropPath(drop_path) if drop_path > 0. else nn.Identity())
            ])))
            self.ffns.append(nn.Sequential(OrderedDict([
                ('norm', norm_layer(dim)),
                ('mlp', Mlp(dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop)),
                ('ls', LayerScale(dim, init_values=init_values) if init_values else nn.Identity()),
                ('drop_path', DropPath(drop_path) if drop_path > 0. else nn.Identity())
            ])))

    def _forward_jit(self, x):
        x = x + torch.stack([attn(x) for attn in self.attns]).sum(dim=0)
        x = x + torch.stack([ffn(x) for ffn in self.ffns]).sum(dim=0)
        return x

    @torch.jit.ignore
    def _forward(self, x):
        x = x + sum(attn(x) for attn in self.attns)
        x = x + sum(ffn(x) for ffn in self.ffns)
        return x

    def forward(self, x):
        if torch.jit.is_scripting() or torch.jit.is_tracing():
            return self._forward_jit(x)
        else:
            return self._forward(x)


class VisionTransformer(nn.Module):
    """ Vision Transformer

    A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
        - https://arxiv.org/abs/2010.11929
    """

    def __init__(
            self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='token',
            embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, init_values=None,
            class_token=True, no_embed_class=False, fc_norm=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,
            weight_init='', embed_layer=PatchEmbed, norm_layer=None, act_layer=None, block_fn=Block, 
            return_hidden_state=False, mask_p=0):
        """
        Args:
            img_size (int, tuple): input image size
            patch_size (int, tuple): patch size
            in_chans (int): number of input channels
            num_classes (int): number of classes for classification head
            global_pool (str): type of global pooling for final sequence (default: 'token')
            embed_dim (int): embedding dimension
            depth (int): depth of transformer
            num_heads (int): number of attention heads
            mlp_ratio (int): ratio of mlp hidden dim to embedding dim
            qkv_bias (bool): enable bias for qkv if True
            init_values: (float): layer-scale init values
            class_token (bool): use class token
            fc_norm (Optional[bool]): pre-fc norm after pool, set if global_pool == 'avg' if None (default: None)
            drop_rate (float): dropout rate
            attn_drop_rate (float): attention dropout rate
            drop_path_rate (float): stochastic depth rate
            weight_init (str): weight init scheme
            embed_layer (nn.Module): patch embedding layer
            norm_layer: (nn.Module): normalization layer
            act_layer: (nn.Module): MLP activation layer
        """
        super().__init__()
        assert global_pool in ('', 'avg', 'token')
        assert class_token or global_pool != 'token'
        use_fc_norm = global_pool == 'avg' if fc_norm is None else fc_norm
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
        act_layer = act_layer or nn.GELU

        self.num_classes = num_classes
        self.global_pool = global_pool
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.num_prefix_tokens = 1 if class_token else 0
        self.no_embed_class = no_embed_class
        self.grad_checkpointing = False

        self.patch_embed = embed_layer(
            img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None
        embed_len = num_patches if no_embed_class else num_patches + self.num_prefix_tokens
        self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * .02)
        self.pos_drop = nn.Dropout(p=drop_rate)

        self.depth = depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        self.blocks = nn.ModuleList([
            block_fn(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, init_values=init_values,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer)
            for i in range(depth)])
        self.norm = norm_layer(embed_dim) if not use_fc_norm else nn.Identity()

        # Classifier Head
        self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity()
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

        if weight_init != 'skip':
            self.init_weights(weight_init)
        self.return_hidden_state = return_hidden_state
        self.mask_p = mask_p

    def init_weights(self, mode=''):
        assert mode in ('jax', 'jax_nlhb', 'moco', '')
        head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0.
        trunc_normal_(self.pos_embed, std=.02)
        if self.cls_token is not None:
            nn.init.normal_(self.cls_token, std=1e-6)
        named_apply(get_init_weights_vit(mode, head_bias), self)

    def _init_weights(self, m):
        # this fn left here for compat with downstream users
        init_weights_vit_timm(m)

    @torch.jit.ignore()
    def load_pretrained(self, checkpoint_path, prefix=''):
        _load_weights(self, checkpoint_path, prefix)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token', 'dist_token'}

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        return dict(
            stem=r'^cls_token|pos_embed|patch_embed',  # stem and embed
            blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))]
        )

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.grad_checkpointing = enable

    @torch.jit.ignore
    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes: int, global_pool=None):
        self.num_classes = num_classes
        if global_pool is not None:
            assert global_pool in ('', 'avg', 'token')
            self.global_pool = global_pool
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def _pos_embed(self, x):
        if self.no_embed_class:
            # deit-3, updated JAX (big vision)
            # position embedding does not overlap with class token, add then concat
            x = x + self.pos_embed
            if self.cls_token is not None:
                x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
        else:
            # original timm, JAX, and deit vit impl
            # pos_embed has entry for class token, concat then add
            if self.cls_token is not None:
                x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
            x = x + self.pos_embed
        return self.pos_drop(x)

    def forward_features(self, x):
        x = self.patch_embed(x)
        x = self._pos_embed(x)
        if self.grad_checkpointing and not torch.jit.is_scripting():
            x = checkpoint_seq(self.blocks, x)
        else:
            x = self.blocks(x)
        x = self.norm(x)
        return x

    def forward_head(self, x, pre_logits: bool = False):
        if self.global_pool:
            x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
        x = self.fc_norm(x)
        return x if pre_logits else self.head(x)

#     def forward(self, x):
#         x = self.forward_features(x)
#         x = self.forward_head(x)
#         return x
    
    def forward(self, x, external_features=None):
        all_hidden_states = () if self.return_hidden_state else None
        B = x.shape[0]
        x = self.patch_embed(x)

        cls_tokens = self.cls_token.expand(B, -1, -1)  
        x = torch.cat((cls_tokens, x), dim=1)
  
        x = x + self.pos_embed[:,:x.size(1),:]
        x = self.pos_drop(x)

        if self.mask_p and self.training:
            num_samples = int((1-self.mask_p)*(x.shape[1]-1))
            # idx = torch.tensor(np.random.choice(range(x.shape[1]-1), replace=False))
            L = x.shape[1]-1
            noise = torch.rand(x.shape[0], L, device=x.device)  
            idx = torch.argsort(noise, dim=1)  
            idx = idx[:, :num_samples]
            # idx = x[:, :, 0].multinomial(num_samples=num_samples, replacement=False)
            clst = x[:, :1, :]
            sampled_x = torch.gather(x[:, 1:, :], dim=1, index=idx.unsqueeze(-1).repeat(1, 1, x.shape[-1]))
            x = torch.cat((clst, sampled_x), dim=1)


        if external_features is not None:
            x = torch.cat((x, external_features), dim=1)

        for i,blk in enumerate(self.blocks):
            x = blk(x) 
            if self.return_hidden_state:
                all_hidden_states = all_hidden_states + (self.norm(x),)
        x = self.norm(x)
        
        if self.return_hidden_state:
            return x, all_hidden_states
        else:
            return x






def init_weights_vit_timm(module: nn.Module, name: str = ''):
    """ ViT weight initialization, original timm impl (for reproducibility) """
    if isinstance(module, nn.Linear):
        trunc_normal_(module.weight, std=.02)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif hasattr(module, 'init_weights'):
        module.init_weights()


def init_weights_vit_jax(module: nn.Module, name: str = '', head_bias: float = 0.):
    """ ViT weight initialization, matching JAX (Flax) impl """
    if isinstance(module, nn.Linear):
        if name.startswith('head'):
            nn.init.zeros_(module.weight)
            nn.init.constant_(module.bias, head_bias)
        else:
            nn.init.xavier_uniform_(module.weight)
            if module.bias is not None:
                nn.init.normal_(module.bias, std=1e-6) if 'mlp' in name else nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Conv2d):
        lecun_normal_(module.weight)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif hasattr(module, 'init_weights'):
        module.init_weights()


def init_weights_vit_moco(module: nn.Module, name: str = ''):
    """ ViT weight initialization, matching moco-v3 impl minus fixed PatchEmbed """
    if isinstance(module, nn.Linear):
        if 'qkv' in name:
            # treat the weights of Q, K, V separately
            val = math.sqrt(6. / float(module.weight.shape[0] // 3 + module.weight.shape[1]))
            nn.init.uniform_(module.weight, -val, val)
        else:
            nn.init.xavier_uniform_(module.weight)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif hasattr(module, 'init_weights'):
        module.init_weights()


def get_init_weights_vit(mode='jax', head_bias: float = 0.):
    if 'jax' in mode:
        return partial(init_weights_vit_jax, head_bias=head_bias)
    elif 'moco' in mode:
        return init_weights_vit_moco
    else:
        return init_weights_vit_timm


@torch.no_grad()
def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''):
    """ Load weights from .npz checkpoints for official Google Brain Flax implementation
    """
    import numpy as np

    def _n2p(w, t=True):
        if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
            w = w.flatten()
        if t:
            if w.ndim == 4:
                w = w.transpose([3, 2, 0, 1])
            elif w.ndim == 3:
                w = w.transpose([2, 0, 1])
            elif w.ndim == 2:
                w = w.transpose([1, 0])
        return torch.from_numpy(w)

    w = np.load(checkpoint_path)
    if not prefix and 'opt/target/embedding/kernel' in w:
        prefix = 'opt/target/'

    if hasattr(model.patch_embed, 'backbone'):
        # hybrid
        backbone = model.patch_embed.backbone
        stem_only = not hasattr(backbone, 'stem')
        stem = backbone if stem_only else backbone.stem
        stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel'])))
        stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale']))
        stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias']))
        if not stem_only:
            for i, stage in enumerate(backbone.stages):
                for j, block in enumerate(stage.blocks):
                    bp = f'{prefix}block{i + 1}/unit{j + 1}/'
                    for r in range(3):
                        getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel']))
                        getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale']))
                        getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias']))
                    if block.downsample is not None:
                        block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel']))
                        block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale']))
                        block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias']))
        embed_conv_w = _n2p(w[f'{prefix}embedding/kernel'])
    else:
        embed_conv_w = adapt_input_conv(
            model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel']))
    model.patch_embed.proj.weight.copy_(embed_conv_w)
    model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias']))
    model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False))
    pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False)
    if pos_embed_w.shape != model.pos_embed.shape:
        pos_embed_w = resize_pos_embed(  # resize pos embedding when different size from pretrained weights
            pos_embed_w,
            model.pos_embed,
            getattr(model, 'num_prefix_tokens', 1),
            model.patch_embed.grid_size
        )
    model.pos_embed.copy_(pos_embed_w)
    model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale']))
    model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias']))
    if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
        model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
        model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
    # NOTE representation layer has been removed, not used in latest 21k/1k pretrained weights
    # if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
    #     model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
    #     model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
    for i, block in enumerate(model.blocks.children()):
        block_prefix = f'{prefix}Transformer/encoderblock_{i}/'
        mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/'
        block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
        block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
        block.attn.qkv.weight.copy_(torch.cat([
            _n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')]))
        block.attn.qkv.bias.copy_(torch.cat([
            _n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')]))
        block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
        block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
        for r in range(2):
            getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel']))
            getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias']))
        block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale']))
        block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias']))


def resize_pos_embed(posemb, posemb_new, num_prefix_tokens=1, gs_new=()):
    # Rescale the grid of position embeddings when loading from state_dict. Adapted from
    # https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
    _logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape)
    ntok_new = posemb_new.shape[1]
    if num_prefix_tokens:
        posemb_prefix, posemb_grid = posemb[:, :num_prefix_tokens], posemb[0, num_prefix_tokens:]
        ntok_new -= num_prefix_tokens
    else:
        posemb_prefix, posemb_grid = posemb[:, :0], posemb[0]
    gs_old = int(math.sqrt(len(posemb_grid)))
    if not len(gs_new):  # backwards compatibility
        gs_new = [int(math.sqrt(ntok_new))] * 2
    assert len(gs_new) >= 2
    _logger.info('Position embedding grid-size from %s to %s', [gs_old, gs_old], gs_new)
    posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
    posemb_grid = F.interpolate(posemb_grid, size=gs_new, mode='bicubic', align_corners=False)
    posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1)
    posemb = torch.cat([posemb_prefix, posemb_grid], dim=1)
    return posemb


def checkpoint_filter_fn(state_dict, model, adapt_layer_scale=False):
    """ convert patch embedding weight from manual patchify + linear proj to conv"""
    import re
    out_dict = {}
    if 'model' in state_dict:
        # For deit models
        state_dict = state_dict['model']

    for k, v in state_dict.items():
        if 'patch_embed.proj.weight' in k and len(v.shape) < 4:
            # For old models that I trained prior to conv based patchification
            O, I, H, W = model.patch_embed.proj.weight.shape
            v = v.reshape(O, -1, H, W)
        elif k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]:
            # To resize pos embedding when using model at different size from pretrained weights
            v = resize_pos_embed(
                v,
                model.pos_embed,
                getattr(model, 'num_prefix_tokens', 1),
                model.patch_embed.grid_size
            )
        elif adapt_layer_scale and 'gamma_' in k:
            # remap layer-scale gamma into sub-module (deit3 models)
            k = re.sub(r'gamma_([0-9])', r'ls\1.gamma', k)
        elif 'pre_logits' in k:
            # NOTE representation layer removed as not used in latest 21k/1k pretrained weights
            continue
        out_dict[k] = v
    return out_dict


def _create_vision_transformer(variant, pretrained=False, **kwargs):
    if kwargs.get('features_only', None):
        raise RuntimeError('features_only not implemented for Vision Transformer models.')

    pretrained_cfg = resolve_pretrained_cfg(variant, pretrained_cfg=kwargs.pop('pretrained_cfg', None))


    model = build_model_with_cfg(
        VisionTransformer, variant, pretrained,
        pretrained_cfg=pretrained_cfg,
        pretrained_filter_fn=checkpoint_filter_fn,
        pretrained_custom_load='npz' in pretrained_cfg['url'],
        **kwargs)
    return model


@register_model
def vit_tiny_patch16_224(pretrained=False, **kwargs):
    """ ViT-Tiny (Vit-Ti/16)
    """
    model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs)
    model = _create_vision_transformer('vit_tiny_patch16_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_tiny_patch16_384(pretrained=False, **kwargs):
    """ ViT-Tiny (Vit-Ti/16) @ 384x384.
    """
    model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs)
    model = _create_vision_transformer('vit_tiny_patch16_384', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_small_patch32_224(pretrained=False, **kwargs):
    """ ViT-Small (ViT-S/32)
    """
    model_kwargs = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6, **kwargs)
    model = _create_vision_transformer('vit_small_patch32_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_small_patch32_384(pretrained=False, **kwargs):
    """ ViT-Small (ViT-S/32) at 384x384.
    """
    model_kwargs = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6, **kwargs)
    model = _create_vision_transformer('vit_small_patch32_384', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_small_patch16_224(pretrained=False, **kwargs):
    """ ViT-Small (ViT-S/16)
    NOTE I've replaced my previous 'small' model definition and weights with the small variant from the DeiT paper
    """
    model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs)
    model = _create_vision_transformer('vit_small_patch16_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_small_patch16_384(pretrained=False, **kwargs):
    """ ViT-Small (ViT-S/16)
    NOTE I've replaced my previous 'small' model definition and weights with the small variant from the DeiT paper
    """
    model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs)
    model = _create_vision_transformer('vit_small_patch16_384', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_patch32_224(pretrained=False, **kwargs):
    """ ViT-Base (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights fine-tuned from in21k, source https://github.com/google-research/vision_transformer.
    """
    model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs)
    model = _create_vision_transformer('vit_base_patch32_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_patch32_384(pretrained=False, **kwargs):
    """ ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
    """
    model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs)
    model = _create_vision_transformer('vit_base_patch32_384', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_patch16_224(pretrained=False, **kwargs):
    """ ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
    """
    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
    model = _create_vision_transformer('vit_base_patch16_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_patch16_384(pretrained=False, **kwargs):
    """ ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
    """
    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
    model = _create_vision_transformer('vit_base_patch16_384', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_patch8_224(pretrained=False, **kwargs):
    """ ViT-Base (ViT-B/8) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
    """
    model_kwargs = dict(patch_size=8, embed_dim=768, depth=12, num_heads=12, **kwargs)
    model = _create_vision_transformer('vit_base_patch8_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_large_patch32_224(pretrained=False, **kwargs):
    """ ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). No pretrained weights.
    """
    model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, **kwargs)
    model = _create_vision_transformer('vit_large_patch32_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_large_patch32_384(pretrained=False, **kwargs):
    """ ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
    """
    model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, **kwargs)
    model = _create_vision_transformer('vit_large_patch32_384', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_large_patch16_224(pretrained=False, **kwargs):
    """ ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
    """
    model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs)
    model = _create_vision_transformer('vit_large_patch16_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_large_patch16_384(pretrained=False, **kwargs):
    """ ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
    """
    model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs)
    model = _create_vision_transformer('vit_large_patch16_384', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_large_patch14_224(pretrained=False, **kwargs):
    """ ViT-Large model (ViT-L/14)
    """
    model_kwargs = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16, **kwargs)
    model = _create_vision_transformer('vit_large_patch14_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_huge_patch14_224(pretrained=False, **kwargs):
    """ ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929).
    """
    model_kwargs = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, **kwargs)
    model = _create_vision_transformer('vit_huge_patch14_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_giant_patch14_224(pretrained=False, **kwargs):
    """ ViT-Giant model (ViT-g/14) from `Scaling Vision Transformers` - https://arxiv.org/abs/2106.04560
    """
    model_kwargs = dict(patch_size=14, embed_dim=1408, mlp_ratio=48/11, depth=40, num_heads=16, **kwargs)
    model = _create_vision_transformer('vit_giant_patch14_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_gigantic_patch14_224(pretrained=False, **kwargs):
    """ ViT-Gigantic model (ViT-G/14) from `Scaling Vision Transformers` - https://arxiv.org/abs/2106.04560
    """
    model_kwargs = dict(patch_size=14, embed_dim=1664, mlp_ratio=64/13, depth=48, num_heads=16, **kwargs)
    model = _create_vision_transformer('vit_gigantic_patch14_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_tiny_patch16_224_in21k(pretrained=False, **kwargs):
    """ ViT-Tiny (Vit-Ti/16).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer
    """
    model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs)
    model = _create_vision_transformer('vit_tiny_patch16_224_in21k', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_small_patch32_224_in21k(pretrained=False, **kwargs):
    """ ViT-Small (ViT-S/16)
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer
    """
    model_kwargs = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6, **kwargs)
    model = _create_vision_transformer('vit_small_patch32_224_in21k', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_small_patch16_224_in21k(pretrained=False, **kwargs):
    """ ViT-Small (ViT-S/16)
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer
    """
    model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs)
    model = _create_vision_transformer('vit_small_patch16_224_in21k', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_patch32_224_in21k(pretrained=False, **kwargs):
    """ ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer
    """
    model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs)
    model = _create_vision_transformer('vit_base_patch32_224_in21k', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_patch16_224_in21k(pretrained=False, **kwargs):
    """ ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer
    """
    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
    model = _create_vision_transformer('vit_base_patch16_224_in21k', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_patch8_224_in21k(pretrained=False, **kwargs):
    """ ViT-Base model (ViT-B/8) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer
    """
    model_kwargs = dict(patch_size=8, embed_dim=768, depth=12, num_heads=12, **kwargs)
    model = _create_vision_transformer('vit_base_patch8_224_in21k', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_large_patch32_224_in21k(pretrained=False, **kwargs):
    """ ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    NOTE: this model has a representation layer but the 21k classifier head is zero'd out in original weights
    """
    model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, **kwargs)
    model = _create_vision_transformer('vit_large_patch32_224_in21k', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_large_patch16_224_in21k(pretrained=False, **kwargs):
    """ ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer
    """
    model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs)
    model = _create_vision_transformer('vit_large_patch16_224_in21k', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_huge_patch14_224_in21k(pretrained=False, **kwargs):
    """ ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    NOTE: this model has a representation layer but the 21k classifier head is zero'd out in original weights
    """
    model_kwargs = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, **kwargs)
    model = _create_vision_transformer('vit_huge_patch14_224_in21k', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_patch16_224_sam(pretrained=False, **kwargs):
    """ ViT-Base (ViT-B/16) w/ SAM pretrained weights. Paper: https://arxiv.org/abs/2106.01548
    """
    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
    model = _create_vision_transformer('vit_base_patch16_224_sam', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_patch32_224_sam(pretrained=False, **kwargs):
    """ ViT-Base (ViT-B/32) w/ SAM pretrained weights. Paper: https://arxiv.org/abs/2106.01548
    """
    model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs)
    model = _create_vision_transformer('vit_base_patch32_224_sam', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_small_patch16_224_dino(pretrained=False, **kwargs):
    """ ViT-Small (ViT-S/16) w/ DINO pretrained weights (no head) - https://arxiv.org/abs/2104.14294
    """
    model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs)
    model = _create_vision_transformer('vit_small_patch16_224_dino', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_small_patch8_224_dino(pretrained=False, **kwargs):
    """ ViT-Small (ViT-S/8) w/ DINO pretrained weights (no head) - https://arxiv.org/abs/2104.14294
    """
    model_kwargs = dict(patch_size=8, embed_dim=384, depth=12, num_heads=6, **kwargs)
    model = _create_vision_transformer('vit_small_patch8_224_dino', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_patch16_224_dino(pretrained=False, **kwargs):
    """ ViT-Base (ViT-B/16) /w DINO pretrained weights (no head) - https://arxiv.org/abs/2104.14294
    """
    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
    model = _create_vision_transformer('vit_base_patch16_224_dino', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_patch8_224_dino(pretrained=False, **kwargs):
    """ ViT-Base (ViT-B/8) w/ DINO pretrained weights (no head) - https://arxiv.org/abs/2104.14294
    """
    model_kwargs = dict(patch_size=8, embed_dim=768, depth=12, num_heads=12, **kwargs)
    model = _create_vision_transformer('vit_base_patch8_224_dino', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_patch16_224_miil_in21k(pretrained=False, **kwargs):
    """ ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
    Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K
    """
    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, **kwargs)
    model = _create_vision_transformer('vit_base_patch16_224_miil_in21k', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_patch16_224_miil(pretrained=False, **kwargs):
    """ ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
    Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K
    """
    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, **kwargs)
    model = _create_vision_transformer('vit_base_patch16_224_miil', pretrained=pretrained, **model_kwargs)
    return model


# Experimental models below

@register_model
def vit_base_patch32_plus_256(pretrained=False, **kwargs):
    """ ViT-Base (ViT-B/32+)
    """
    model_kwargs = dict(patch_size=32, embed_dim=896, depth=12, num_heads=14, init_values=1e-5, **kwargs)
    model = _create_vision_transformer('vit_base_patch32_plus_256', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_patch16_plus_240(pretrained=False, **kwargs):
    """ ViT-Base (ViT-B/16+)
    """
    model_kwargs = dict(patch_size=16, embed_dim=896, depth=12, num_heads=14, init_values=1e-5, **kwargs)
    model = _create_vision_transformer('vit_base_patch16_plus_240', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_patch16_rpn_224(pretrained=False, **kwargs):
    """ ViT-Base (ViT-B/16) w/ residual post-norm
    """
    model_kwargs = dict(
        patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, init_values=1e-5, class_token=False,
        block_fn=ResPostBlock, global_pool=kwargs.pop('global_pool', 'avg'), **kwargs)
    model = _create_vision_transformer('vit_base_patch16_rpn_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_small_patch16_36x1_224(pretrained=False, **kwargs):
    """ ViT-Base w/ LayerScale + 36 x 1 (36 block serial) config. Experimental, may remove.
    Based on `Three things everyone should know about Vision Transformers` - https://arxiv.org/abs/2203.09795
    Paper focuses on 24x2 + 48x1 for 'Small' width but those are extremely slow.
    """
    model_kwargs = dict(patch_size=16, embed_dim=384, depth=36, num_heads=6, init_values=1e-5, **kwargs)
    model = _create_vision_transformer('vit_small_patch16_36x1_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_small_patch16_18x2_224(pretrained=False, **kwargs):
    """ ViT-Small w/ LayerScale + 18 x 2 (36 block parallel) config. Experimental, may remove.
    Based on `Three things everyone should know about Vision Transformers` - https://arxiv.org/abs/2203.09795
    Paper focuses on 24x2 + 48x1 for 'Small' width but those are extremely slow.
    """
    model_kwargs = dict(
        patch_size=16, embed_dim=384, depth=18, num_heads=6, init_values=1e-5, block_fn=ParallelBlock, **kwargs)
    model = _create_vision_transformer('vit_small_patch16_18x2_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_patch16_18x2_224(pretrained=False, **kwargs):
    """ ViT-Base w/ LayerScale + 18 x 2 (36 block parallel) config. Experimental, may remove.
    Based on `Three things everyone should know about Vision Transformers` - https://arxiv.org/abs/2203.09795
    """
    model_kwargs = dict(
        patch_size=16, embed_dim=768, depth=18, num_heads=12, init_values=1e-5, block_fn=ParallelBlock, **kwargs)
    model = _create_vision_transformer('vit_base_patch16_18x2_224', pretrained=pretrained, **model_kwargs)
    return model