File size: 18,990 Bytes
3eb682b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
import argparse
import os
import ruamel_yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path

import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
 

from models.epalm import ePALM
from models.utils import freeze_whole_model, unfreeze_parameters, print_trainable_params_percentage



from transformers import AutoTokenizer


import utils

from dataset.video_vqa import get_loader 

from scheduler import create_scheduler
from optim import create_optimizer
 


from tqdm import tqdm 


from models.utils import filter_state, filter_msg, exclude_list


def train(model, data_loader, optimizer, tokenizer, epoch, warmup_steps, device, scheduler, config):
    model.train()  
    

    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
    metric_logger.add_meter('loss', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))

    config_optim = utils.AttrDict(config['optimizer'])
    prompt_lr = config_optim.prompt_lr if hasattr(config_optim, 'prompt_lr') else None
    connector_lr = config_optim.connector_lr if hasattr(config_optim, 'connector_lr') else None
    vis_lr = config_optim.vis_lr if hasattr(config_optim, 'vis_lr') else None
    text_lr = config_optim.text_lr if hasattr(config_optim, 'text_lr') else None

    print(vis_lr, text_lr, connector_lr, len(optimizer.param_groups))
    if prompt_lr is not None:
        metric_logger.add_meter('prompt_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))



    header = 'Train Epoch: [{}]'.format(epoch)
    print_freq = 50    
    step_size = 100
    warmup_iterations = warmup_steps*step_size  
    lm_loss_weight = config.get('lm_loss_weight', 1)
    special_answer_token = config.get('special_answer_token', None)

    special_eo_answer_token = config.get('special_eo_answer_token', None)




    eos_token = tokenizer.eos_token if special_eo_answer_token is None else special_eo_answer_token

    for i, batch in enumerate(metric_logger.log_every(data_loader, print_freq, header)):

        image = batch['images'].to(device,non_blocking=True)

        question = batch['sent']

        answer = batch['answers']

        
        questions_answers = []


        if special_answer_token is not None:
            questions_answers += [question[i] + "?" + special_answer_token + answer[i].replace('[SEP]','') + eos_token for i in range(len(question))]  
        else:
            questions_answers += [question[i] + "</s>" + answer[i].replace('[SEP]','') +  eos_token for i in range(len(question))]  

        questions_answers_input = tokenizer(questions_answers, padding='longest', return_tensors="pt").to(device) 
        answer_targets = questions_answers_input.input_ids.masked_fill(questions_answers_input.input_ids == tokenizer.pad_token_id, -100)

        images = image

        

        answer_output = model(image=images, 
                              text=questions_answers_input, 
                              labels = answer_targets,
                              return_dict = True,   
                              mode='train',
                              reduction='none',
                             )      
        
        loss = answer_output.loss         
        loss = loss.sum()/image.size(0)
        loss = loss*lm_loss_weight
        
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()    
        
        metric_logger.update(loss=loss.item())
        metric_logger.update(lr=optimizer.param_groups[0]["lr"])
        if prompt_lr is not None:
            metric_logger.update(prompt_lr=optimizer.param_groups[1]["lr"])

        if i % print_freq == 0:
            lrs = [g["lr"] for g in optimizer.param_groups]
            print(lrs)

        if epoch==0 and i%step_size==0 and i<=warmup_iterations: 
            if scheduler is not None:
                scheduler.step(i//step_size) 

    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger.global_avg())     
    return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()} 



@torch.no_grad()
def predict(model, loader, tokenizer, device, dump_path=None, verbose=False, distributed=False, special_answer_token=None, special_eo_answer_token=None):
    model.eval()
    eos_token = tokenizer.eos_token if special_eo_answer_token is None else special_eo_answer_token
    pad_token = tokenizer.pad_token

    with torch.no_grad():
        quesid2ans = {}
        if verbose:
            pbar = tqdm(total=len(loader), ncols=120, desc="Prediction")
        for i, batch in enumerate(loader):


            image = batch['images'].to(device,non_blocking=True)

            question = batch['sent']

            question_id = batch['question_ids']

            if special_answer_token is not None:
                question = [q+'?'+special_answer_token for q in question]
            else:
                question = [q+eos_token for q in question]

            question_input = tokenizer(question, padding='longest', return_tensors="pt").to(device) 

            out = model(image=image, text=question_input, mode='generate', return_dict=True, max_length=30, do_sample=True)
            
            


            for ques_id, o in zip(question_id, out):
                o_list = o.tolist()
                try:
                    if special_answer_token is not None:
                        response = tokenizer.decode(o_list).split(special_answer_token)[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
                    else:
                        response = tokenizer.decode(o_list).split('</s>')[2].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
                except TypeError:
                    print(o_list)
                    response = ' '

                ques_id = ques_id          
                quesid2ans[ques_id] = response  


            if verbose:
                pbar.update(1)
        if verbose:
            pbar.close()

    if distributed:
        dist.barrier()

    qid2ans_list = utils.all_gather(quesid2ans)
    if verbose:
        quesid2ans = {}
        for qid2ans in qid2ans_list:
            for k, v in qid2ans.items():
                quesid2ans[k] = v

        if dump_path is not None:
            evaluator = loader.evaluator
            evaluator.dump_result(quesid2ans, dump_path)

    return quesid2ans


  

def evaluate(model, data_loader, tokenizer, device, 
        distributed=False, special_answer_token=None, special_eo_answer_token=None):
    verbose = utils.is_main_process()


    quesid2ans = predict(model, data_loader, tokenizer, device, verbose=verbose, 
        distributed=distributed, special_answer_token=special_answer_token, special_eo_answer_token=special_eo_answer_token)

    evaluator = data_loader.evaluator

    acc_dict = {}
    topk_score = evaluator.evaluate(quesid2ans, normalize_answer=True)
    acc_dict['topk_score'] = topk_score
    return acc_dict








def main(args, config):

    os.environ['TORCH_HOME'] = os.environ['XDG_CACHE_HOME']+'/torch'

    utils.init_distributed_mode(args)    
    
    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)
    cudnn.benchmark = True
    
    start_epoch = 0
    max_epoch = config['schedular']['epochs']
    warmup_steps = config['schedular']['warmup_epochs']
    
    
    #### Dataset #### 
    
    print("Creating dataset")

    if args.distributed:
        num_tasks = utils.get_world_size()
        global_rank = utils.get_rank()     
    else:
        num_tasks = None
        global_rank = None
    
    num_workers = config.get('num_workers', 4)
    train_topk = config.get('train_topk', -1)
    valid_topk = config.get('valid_topk', -1)
    data_dir = args.data_dir

    args.image_size = config.get('image_res', 224)
    args.use_data_augmentation = True 


    # video 
    args.num_frames = config.get('num_frames', 4)
    args.as_images = config.get('as_images', True)
    args.num_tries = config.get('num_tries', 1)
    args.sample_type = config.get('sample_type', 'rand')

    train_split = config.get('train_split', 'train') 
    val_split = config.get('val_split', 'val') 
    test_split = config.get('test_split', 'test') 


    train_loader = get_loader(
        args,
        split=train_split, mode='train', batch_size=config['batch_size_train'],
        distributed=args.distributed,
        workers=num_workers,
        topk=train_topk,
        data_dir=data_dir,
        local_rank=global_rank, world_size=num_tasks, verbose=True
    )

    args.raw_label = False
    print('# len train loader:', len(train_loader))
    print(f'Building val loader')
    val_loader = get_loader(
        args,
        split=val_split, mode='val', batch_size=config['batch_size_test'],
        distributed=args.distributed, 
        workers=4,
        topk=valid_topk,data_dir=data_dir,
        local_rank=global_rank, world_size=num_tasks, verbose=True
    )
    print('# len val loader:', len(val_loader))

    print(f'Building test loader')
    test_loader = get_loader(
        args,
        split=test_split, mode='val', batch_size=config['batch_size_test'],
        distributed=args.distributed, 
        workers=4,
        topk=valid_topk,data_dir=data_dir,
        local_rank=global_rank, world_size=num_tasks, verbose=True
    )


    print('# len test loader:', len(test_loader))


    if args.submit:
        print(f'Building test submit loader ...')
        submit_test_loader = get_loader(
            args,
            split='test', mode='val', batch_size=config['batch_size_test'],
            distributed=args.distributed, gpu=args.gpu,
            workers=4,
            topk=valid_topk, data_dir=data_dir,
            local_rank=global_rank, world_size=num_tasks, verbose=True
        )

    #### Model #### 
    print("Creating model")
    
    start_layer_idx = config.get('start_layer_idx', 0)
    end_layer_idx = config.get('end_layer_idx', 0)

    
    vision_model_name = config.get('vision_model_name', args.vision_model)
    
    model = ePALM(opt_model_name = args.text_model, 
                   vision_model_name = vision_model_name, 
                   use_vis_prefix = True, 
                   start_layer_idx = start_layer_idx, 
                   end_layer_idx = end_layer_idx, 
                   return_hidden_state_vision = True, 
                   config=config,
    )
    
        
    model = model.to(device)   
    

    tokenizer_name = config.get('tokenizer_name', args.text_model)
        
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=False, local_files_only=True)
   
    

    special_answer_token = config.get('special_answer_token', None)
    special_eo_answer_token = config.get('special_eo_answer_token', None)


    if special_answer_token is not None:
        special_tokens_dict = {'additional_special_tokens': [special_answer_token]}
        if special_eo_answer_token is not None:
            special_tokens_dict['additional_special_tokens'] += [special_eo_answer_token]

        tokenizer.add_special_tokens(special_tokens_dict)
        print("Adding special token:", special_tokens_dict)
        print(tokenizer)

    arg_opt = utils.AttrDict(config['optimizer'])
    optimizer = create_optimizer(arg_opt, model, config=config['optimizer'])

    if hasattr(arg_opt, 'prompt_lr') and arg_opt.prompt_lr is not None:
        print('\tInitial other params params lr: %f' % optimizer.param_groups[0]['lr'])
        print('\tInitial prompt params lr: %f' % optimizer.param_groups[1]['lr'])

    arg_sche = utils.AttrDict(config['schedular'])
    lr_scheduler, _ = create_scheduler(arg_sche, optimizer)          
         
    
    if args.checkpoint:    

        checkpoint = torch.load(args.checkpoint, map_location='cpu') 
        state_dict = checkpoint['model']


        msg = model.load_state_dict(state_dict,strict=False)  
        msg = filter_msg(msg, exclude_list)
        print('load checkpoint from %s'%args.checkpoint)
        print(msg)  

        if 'best_valid' in checkpoint:
            print("load best valid {} at epoch {}".format(checkpoint['best_valid'] , checkpoint['best_epoch'] ))

        if args.resume:
            model = model.to(device) 
            optimizer.load_state_dict(checkpoint['optimizer'])
            lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
            start_epoch = checkpoint['epoch']+1  
            print(checkpoint.keys())
            if 'best_valid' in checkpoint:
                best_valid = checkpoint['best_valid'] 
                best_epoch = checkpoint['best_epoch'] 
                print("load best valid {} at epoch {}".format(best_valid, best_epoch))

    freeze_whole_model(model)
    unfreeze_parameters(model, config)
    print_trainable_params_percentage(model)

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module    
    
    
    print("Start training")
    start_time = time.time()

    best_valid = 0.
    best_epoch = 0

    for epoch in range(start_epoch, max_epoch):
        if epoch>0:
            if lr_scheduler is not None:
                lr_scheduler.step(epoch+warmup_steps)  
        
        if not args.evaluate:
            if args.distributed:
                train_loader.sampler.set_epoch(epoch)

            train_stats = train(model, train_loader, optimizer, tokenizer, epoch, warmup_steps, device, lr_scheduler, config)  

        if args.evaluate:
            break

        score_dict = evaluate(model, val_loader, tokenizer, device, distributed=args.distributed, 
            special_answer_token=special_answer_token, special_eo_answer_token=special_eo_answer_token)
        print(score_dict)
        if utils.is_main_process():               
            log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
                         'epoch': epoch,
                        }                
            with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
                f.write(json.dumps(log_stats) + "\n")                        
                     
            if lr_scheduler is None:
                lr_scheduler_state_dict = {}
            else:
                lr_scheduler_state_dict = lr_scheduler.state_dict()    
            save_obj = {
                'model': filter_state(model_without_ddp.state_dict(), exclude_list),
                'optimizer': optimizer.state_dict(),
                'lr_scheduler': lr_scheduler_state_dict,
                'config': config,
                'epoch': epoch,
                'best_valid': best_valid,
                'best_epoch': best_epoch,
            }

            if args.save_best:
                valid_score = score_dict['topk_score'] * 100.
                if valid_score > best_valid or epoch == 0:
                    best_valid = valid_score
                    best_epoch = epoch
                    
                    save_obj['best_valid'] = best_valid
                    save_obj['best_epoch'] = best_epoch

                    print("save best epoch:", best_epoch)
                    torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth'))  

            torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_last.pth'))                  

        dist.barrier()   
    
    if lr_scheduler is None:
        lr_scheduler_state_dict = {}
    else:
        lr_scheduler_state_dict = lr_scheduler.state_dict()    
    save_obj = {
        'model': filter_state(model_without_ddp.state_dict(), exclude_list),
        'optimizer': optimizer.state_dict(),
        'lr_scheduler': lr_scheduler_state_dict,
        'config': config,
        'epoch': epoch,
        'best_valid': best_valid,
        'best_epoch': best_epoch,
    }
    torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_last.pth'))  

    verbose = utils.is_main_process()

    
    if not args.evaluate:
        checkpoint = torch.load(os.path.join(args.output_dir, 'checkpoint_best.pth'), map_location='cpu') 
        state_dict = checkpoint['model']   
        msg = model.module.load_state_dict(state_dict,strict=False)  
        msg = filter_msg(msg, exclude_list)
        print('load checkpoint for test from %s'%os.path.join(args.output_dir, 'checkpoint_best.pth'))
        print(msg)

    quesid2ans = predict(model, test_loader, tokenizer, device, verbose=verbose, 
        distributed=args.distributed, special_answer_token=special_answer_token, special_eo_answer_token=special_eo_answer_token)

    evaluator = test_loader.evaluator
    score_dict = evaluator.evaluate(quesid2ans, normalize_answer=True)

    print("Test accuracy:", score_dict)


    if args.submit:
        dump_path = os.path.join(args.output_dir, 'submit.json')
        predict(submit_test_loader, dump_path)


    if args.distributed:
        dist.barrier()
        exit()


                     
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str)) 
    
            

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', default='./configs/VQA.yaml') 
    parser.add_argument('--checkpoint', default='') 
    parser.add_argument('--output_dir', default='output/vqa')
    parser.add_argument('--evaluate', action='store_true')    
    parser.add_argument('--text_model', default='facebook/opt-350m')
    parser.add_argument('--vision_model', default='vit_base_patch16_224')
    parser.add_argument('--device', default='cuda')
    parser.add_argument('--seed', default=42, type=int)
    parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')    
    parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
    parser.add_argument('--distributed', default=True, type=bool)
    
    parser.add_argument('--data_dir', default='/data/mshukor/data')   
    parser.add_argument('--resume', action='store_true')    

    parser.add_argument('--submit', action='store_true') 
    parser.add_argument('--save_best', action='store_true') 



    args = parser.parse_args()

    config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)

    args.result_dir = os.path.join(args.output_dir, 'result')

    Path(args.output_dir).mkdir(parents=True, exist_ok=True)
    Path(args.result_dir).mkdir(parents=True, exist_ok=True)
        
    yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))    
    
    main(args, config)