File size: 16,413 Bytes
3eb682b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f015d18
3eb682b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

import torch
from torch import nn

from transformers import AutoConfig
from models.opt import OPTForCausalLM
import models.vit 

import numpy as np

from copy import deepcopy


import torch.nn.functional as F
from transformers.tokenization_utils_base import BatchEncoding

from models.connector import connector 

from models.adapters import (
    Adapter,
    ParallelAdapter,
    AdapterWrapper,
    ParallelAdapterWrapper,
)
from typing import Literal



from models.timesformer import TimeSformer


from models.ast import ASTModel  


def rank_answer(model, image, question_input, answer_ids, answer_atts, k, tokenizer, special_answer_token=None):

    num_ques = question_input.input_ids.size(0)
    if special_answer_token is not None:
        start_input = question_input
        start_ids = question_input.input_ids
        attention_mask = question_input.attention_mask
    else:
        start_ids = answer_ids[0,0].repeat(num_ques,1) # bos token

        start_ids = torch.cat((question_input.input_ids,  start_ids), dim=1)
        attention_mask = torch.cat((question_input.attention_mask,  torch.ones((num_ques, 1)).to(question_input.attention_mask.device)), dim=1)
    
        start_input = {'input_ids': start_ids, 'attention_mask': attention_mask}
        start_input = BatchEncoding(start_input)
    
    
    
    start_output = model(image, start_input, return_dict = True, mode='evaluate')     
    
    logits = start_output.logits[:,-1,:] # first token's logit

    # topk_probs: top-k probability 
    # topk_ids: [num_question, k]        
    answer_first_token = answer_ids[:,1]
    prob_first_token = F.softmax(logits,dim=1).index_select(dim=1, index=answer_first_token) 
    topk_probs, topk_ids = prob_first_token.topk(k,dim=1) 

    # answer input: [num_question*k, answer_len]                 
    input_ids = []
    input_atts = []
    for b, topk_id in enumerate(topk_ids):
        input_ids.append(answer_ids.index_select(dim=0, index=topk_id))
        input_atts.append(answer_atts.index_select(dim=0, index=topk_id))
    input_ids = torch.cat(input_ids,dim=0)  
    input_atts = torch.cat(input_atts,dim=0)  
    
    attention_mask = tile(attention_mask, 0, k)
    image = tile(image, 0, k)
    
    
        
    start_ids = tile(start_ids, 0, k)
    input_ids = torch.cat((start_ids, input_ids), dim=1) # include the  <s> ?
    input_atts = torch.cat((attention_mask, input_atts), dim=1)
        
    targets_ids = input_ids.masked_fill(input_ids == tokenizer.pad_token_id, -100)

    
    
    # repeat encoder's output for top-k answers


    inputs = {'input_ids': input_ids, 'attention_mask': input_atts}
    inputs = BatchEncoding(inputs)
    
    output = model(image, inputs, labels = targets_ids, return_dict = True, mode='train', reduction='none')                 

    answer_loss = output.loss 
    answer_loss = answer_loss.view(input_ids.size(0),-1)

    # topk_prob: first token probability

    topk_probs = topk_probs.view(-1,1)
    log_probs = torch.cat([topk_probs.log(), -answer_loss],dim=1)

    # re-calculate log probabilities for the answer sequences using chain rule
    log_probs_sum = log_probs.sum(1)
    log_probs_sum = log_probs_sum.view(num_ques,k)

    topk_probs = F.softmax(log_probs_sum, dim=-1)
    # get top-k after re-ranking
    topk_probs, rerank_id = topk_probs.topk(k,dim=1) 
    topk_ids = torch.gather(topk_ids, 1, rerank_id)    

    return topk_ids, topk_probs
    
def tile(x, dim, n_tile):
    init_dim = x.size(dim)
    repeat_idx = [1] * x.dim()
    repeat_idx[dim] = n_tile
    x = x.repeat(*(repeat_idx))
    order_index = torch.LongTensor(np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)]))
    return torch.index_select(x, dim, order_index.to(x.device))    



        
     


## modified from https://github.com/ylsung/VL_adapter/blob/main/VL-T5/src/prompt/prompt_modeling.py

class InputPrompts(nn.Module):
    def __init__(self, prompt_len = 10,
                 prompt_dim = 1024,
                 mid_dim=512, mlp=True, deep=False, nb_prompts=12):
        super().__init__()
        
        self.prompt_len = prompt_len
        self.prompt_dim = prompt_dim
        self.mid_dim = mid_dim

        

        self.deep = deep 
        self.nb_prompts = nb_prompts
        if self.deep:
            print("Init deep prompts", nb_prompts)
            p_len = prompt_len*nb_prompts
        else:
            p_len = prompt_len

        self.prefix_tokens = torch.arange(p_len).long()
        if mlp:
            self.prefix_embedding = nn.Sequential(
                nn.Embedding(p_len, self.prompt_dim),
                nn.Linear(self.prompt_dim, self.mid_dim),
                nn.Tanh(),
                nn.Linear(self.mid_dim, self.prompt_dim),
            )
        else:
            self.prefix_embedding = nn.Sequential(
                nn.Embedding(p_len, self.prompt_dim),
            )

    def get_prompt(self, bsz, device):
        input_tokens = self.prefix_tokens.unsqueeze(0).expand(bsz, -1).to(device) # (B, L)
        prefix_prompt = self.prefix_embedding(input_tokens) # (B, L, pdim)
        
        if self.deep:

            prefix_prompt = prefix_prompt.view(bsz, self.nb_prompts, self.prompt_len, self.prompt_dim)
            prompts = [prefix_prompt[:, i, :, :] for i in range(self.nb_prompts)]
            return prompts

        return prefix_prompt


class ePALM(nn.Module):
    def __init__(self,                 
                 opt_model_name = 'facebook/opt-350m',
                 vision_model_name = 'vit_base_patch16_224',
                 use_vis_prefix = True,
                 start_layer_idx = 11,
                 end_layer_idx = 23,
                 return_hidden_state_vision = True,
                 config = None, low_cpu=False,
                 ):
        super().__init__()
        print("Loading ePALM ...")
        # text

        config_opt = AutoConfig.from_pretrained(opt_model_name)
        
        config_opt.use_vis_prefix = use_vis_prefix
        config_opt.start_layer_idx = start_layer_idx
        config_opt.end_layer_idx = end_layer_idx
            
        use_cache = config.get('use_cache', True)
        config_opt.use_cache = use_cache 




        text_step = config.get('text_step', 1)
        config_opt.text_step = text_step

        self.select_higher_step = config.get('select_higher_step', False)
        config_opt.select_higher_step = self.select_higher_step
        

        if not hasattr(config_opt, 'activation_dropout'):
            config_opt.activation_dropout = 0.0

        print("Loading: ", opt_model_name)
        self.no_attention_mask = False

        if low_cpu:
            self.model_text = OPTForCausalLM.from_pretrained(opt_model_name, config=config_opt, torch_dtype=torch.float16, low_cpu_mem_usage=False)
        else:
            self.model_text = OPTForCausalLM.from_pretrained(opt_model_name, config=config_opt)
            
        self.transformer = self.model_text.model.decoder.layers

        print(self.model_text.config)
        # vision
        print("Loading: ", vision_model_name)

        image_size = config.get('image_res', 224)
        num_frames = config.get('num_frames', 4)
        pretrained_model = config.get('pretrained_model', None)


        mask_p = config.get('mask_p', 0)
        
        space_only_for_images = config.get('space_only_for_images', None)
        if 'timesformer' in vision_model_name:
            print("Load:", pretrained_model)
            self.model_vision = TimeSformer(img_size=image_size, num_frames=num_frames, 
            attention_type='divided_space_time',  pretrained_model=pretrained_model, 
            return_hidden_state=return_hidden_state_vision, space_only_for_images=space_only_for_images)
            vis_dim = self.model_vision.embed_dim


        elif 'ast' in vision_model_name:
            print("Load:", pretrained_model)
            self.model_vision = ASTModel(audioset_pretrain=True, verbose=True, 
                pretrained_model=pretrained_model, return_hidden_state=return_hidden_state_vision)
            vis_dim = self.model_vision.original_embedding_dim

        else: 
            vision_func = getattr(models.vit, vision_model_name)
            if pretrained_model is not None:
                pretrained=False
            else:
                pretrained = True
            self.model_vision = vision_func(pretrained=pretrained, return_hidden_state=return_hidden_state_vision, 
                 mask_p=mask_p)
            if pretrained_model:
                self.model_vision.load_pretrained(pretrained_model)

            vis_dim = self.model_vision.embed_dim
        
        # connector
        connector_type = config.get('connector_type', 'linear')
        self.connector_type = connector_type





        injected_hidden_states = config.get('injected_hidden_states', 1)
        self.injected_hidden_states = injected_hidden_states
        
        
        text_dim = self.model_text.config.hidden_size

        connector_config = config.get('connector_config', None)
        self.shared_connector = config.get('shared_connector', None)


            
        if self.shared_connector is not None:
            num_connectors = 1 
        else:
            num_connectors = self.injected_hidden_states


        self.connector = connector(connector_type=connector_type, input_dim=vis_dim, output_dim=text_dim, num_layers=num_connectors, connector_config=connector_config) #nn.ModuleList([nn.Linear(vis_dim, text_dim) for i in range(injected_hidden_states)])

        # Prompt
        self.prompt_tuning = config.get('prompt_tuning', False)
        if self.prompt_tuning:
            prompt_len = config.get("prompt_len", 10)

            prompt_dim = config_opt.word_embed_proj_dim

            mlp = config.get('mlp', True)
            deep = config.get('deep', False)
            nb_prompts = config.get('nb_prompts', 12)
            self.prompt_module = InputPrompts(prompt_len=prompt_len, prompt_dim=prompt_dim, mid_dim=prompt_dim, 
                mlp=mlp, deep=deep, nb_prompts=nb_prompts)

        # Adapters
        self.use_adapters = config.get('use_adapters', False)
        self.mlp_adapter_added, self.attn_adapter_added = False, False
        if self.use_adapters:
            mlpconfig = config['adapter_config'].get("mlp", None)
            if mlpconfig is not None:
                mlp_config = deepcopy(mlpconfig)
            else:
                mlp_config = mlpconfig

            ff_attr = "fc2"
            attn_attr = "self_attn"

            if mlp_config:
                assert mlp_config.get("adapter_type") is not None
                self.add_adapters(
                    location="mlp",
                    adapter_type=mlp_config.pop("adapter_type"),
                    downsample_factor=mlp_config.pop("downsample_factor", 4),
                    ff_attr = ff_attr,
                    attn_attr = attn_attr,
                    **mlp_config,
                )
            attn_config = deepcopy(config['adapter_config'].get("attention", None))
            if attn_config:
                assert attn_config.get("adapter_type") is not None
                self.add_adapters(
                    location="attention",
                    adapter_type=attn_config.pop("adapter_type"),
                    ff_attr = ff_attr,
                    attn_attr = attn_attr,
                    **attn_config,
                )
        
        
    def forward(self, image=None, text=None, mode='generate', return_dict=True, labels=None, reduction='mean', modality=None, **generation_kwargs):
        
        if image is not None:
            image_embed, image_feat = self.model_vision(image, external_features=None)

            image_feat = list(image_feat)

            image_feat = image_feat[-self.injected_hidden_states:]
            
            for i in range(1, self.injected_hidden_states + 1):

                if self.shared_connector:
                    image_feat[-i] = self.connector[0](image_feat[-i][:, 0, :].unsqueeze(1))
                else:
                    if modality is not None:
                        image_feat[-i] = self.connector[-i](image_feat[-i][:, 0, :].unsqueeze(1), modality=modality)
                    else:
                        image_feat[-i] = self.connector[-i](image_feat[-i][:, 0, :].unsqueeze(1))

        else:
            image_feat = None
        
        if self.prompt_tuning:
            prompts = self.prompt_module.get_prompt(text.input_ids.shape[0], text.attention_mask.device)
        else:
            prompts = None 

        if self.no_attention_mask:
            attention_mask = None 
        else:
            attention_mask = text.attention_mask
        if mode == 'train' or mode == 'evaluate':
            text_output = self.model_text(input_ids=text.input_ids, attention_mask=attention_mask, 
                return_dict=return_dict, vis_prefix=image_feat, labels = labels, reduction=reduction, 
                prompt_embeds=prompts, connector=self.connector)
            return text_output
        elif mode == 'generate':
            gen = self.model_text.generate(input_ids=text.input_ids, vis_prefix=image_feat, prompt_embeds=prompts, 
                connector=self.connector, attention_mask=attention_mask,
                **generation_kwargs)        
            return gen


    def add_adapters(
        self,
        downsample_factor: int = 4,
        adapter_type: Literal["normal", "parallel", "scaled_parallel"] = "normal",
        location: Literal["mlp", "attention"] = "mlp",
        ff_attr: str = "fc2",
        attn_attr: str = "self_attn",
        **adapter_kwargs,
    ):
        """
        Adds an adapter layer to `self` at the specified location
        """
        assert adapter_type in [
            "normal",
            "parallel",
            "scaled_parallel",
        ], "adapter_type must be one of 'normal', 'parallel', or 'scaled_parallel'"
        assert location in [
            "mlp",
            "attention",
        ], "location must be one of 'mlp' or 'attention'"

        for l in range(len(self.transformer)):
            if location == "mlp":
                if self.mlp_adapter_added:
                    raise ValueError("Adapter layer already added")
                mlp = getattr(self.transformer[l], ff_attr)
                if adapter_type in ["parallel", "scaled_parallel"]:
                    adapter_layer = ParallelAdapter(
                        module=mlp,
                        dim=self.model_text.config.hidden_size,
                        downsample_factor=downsample_factor,
                        scaled=adapter_type == "scaled_parallel",
                        **adapter_kwargs,
                    )
                else:
                    adpt = Adapter(
                        dim=self.model_text.config.hidden_size,
                        downsample_factor=downsample_factor,
                        **adapter_kwargs,
                    )
                    adapter_layer = nn.Sequential(
                        *[
                            mlp,
                            adpt,
                        ]
                    )
                setattr(self.transformer[l], ff_attr, adapter_layer)
            else:
                if self.attn_adapter_added:
                    raise ValueError("Adapter layer already added")
                attn = getattr(self.transformer[l], attn_attr)
                if adapter_type in ["parallel", "scaled_parallel"]:
                    adapter_layer = ParallelAdapterWrapper(
                        module=attn,
                        dim=self.model_text.config.hidden_size,
                        downsample_factor=downsample_factor,
                        scaled="scaled" in adapter_type,
                        **adapter_kwargs,
                    )
                else:
                    adapter_layer = AdapterWrapper(
                        attn_block=attn,
                        dim=self.model_text.config.hidden_size,
                        downsample_factor=downsample_factor,
                        **adapter_kwargs,
                    )
                setattr(self.transformer[l], attn_attr, adapter_layer)

        if location == "mlp":
            self.mlp_adapter_added = True
        else:
            self.attn_adapter_added = True