File size: 3,734 Bytes
3eb682b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.

"""Functions for computing metrics."""

import torch
import numpy as np

def topks_correct(preds, labels, ks):
    """
    Given the predictions, labels, and a list of top-k values, compute the
    number of correct predictions for each top-k value.

    Args:
        preds (array): array of predictions. Dimension is batchsize
            N x ClassNum.
        labels (array): array of labels. Dimension is batchsize N.
        ks (list): list of top-k values. For example, ks = [1, 5] correspods
            to top-1 and top-5.

    Returns:
        topks_correct (list): list of numbers, where the `i`-th entry
            corresponds to the number of top-`ks[i]` correct predictions.
    """
    assert preds.size(0) == labels.size(
        0
    ), "Batch dim of predictions and labels must match"
    # Find the top max_k predictions for each sample
    _top_max_k_vals, top_max_k_inds = torch.topk(
        preds, max(ks), dim=1, largest=True, sorted=True
    )
    # (batch_size, max_k) -> (max_k, batch_size).
    top_max_k_inds = top_max_k_inds.t()
    # (batch_size, ) -> (max_k, batch_size).
    rep_max_k_labels = labels.view(1, -1).expand_as(top_max_k_inds)
    # (i, j) = 1 if top i-th prediction for the j-th sample is correct.
    top_max_k_correct = top_max_k_inds.eq(rep_max_k_labels)
    # Compute the number of topk correct predictions for each k.
    topks_correct = [top_max_k_correct[:k, :].float().sum() for k in ks]
    return topks_correct


def topk_errors(preds, labels, ks):
    """
    Computes the top-k error for each k.
    Args:
        preds (array): array of predictions. Dimension is N.
        labels (array): array of labels. Dimension is N.
        ks (list): list of ks to calculate the top accuracies.
    """
    num_topks_correct = topks_correct(preds, labels, ks)
    return [(1.0 - x / preds.size(0)) * 100.0 for x in num_topks_correct]


def topk_accuracies(preds, labels, ks):
    """
    Computes the top-k accuracy for each k.
    Args:
        preds (array): array of predictions. Dimension is N.
        labels (array): array of labels. Dimension is N.
        ks (list): list of ks to calculate the top accuracies.
    """
    num_topks_correct = topks_correct(preds, labels, ks)
    return [(x / preds.size(0)) * 100.0 for x in num_topks_correct]

def multitask_topks_correct(preds, labels, ks=(1,)):
    """
    Args:
        preds: tuple(torch.FloatTensor), each tensor should be of shape
            [batch_size, class_count], class_count can vary on a per task basis, i.e.
            outputs[i].shape[1] can be different to outputs[j].shape[j].
        labels: tuple(torch.LongTensor), each tensor should be of shape [batch_size]
        ks: tuple(int), compute accuracy at top-k for the values of k specified
            in this parameter.
    Returns:
        tuple(float), same length at topk with the corresponding accuracy@k in.
    """
    max_k = int(np.max(ks))
    task_count = len(preds)
    batch_size = labels[0].size(0)
    all_correct = torch.zeros(max_k, batch_size).type(torch.ByteTensor)
    if torch.cuda.is_available():
        all_correct = all_correct.cuda()
    for output, label in zip(preds, labels):
        _, max_k_idx = output.topk(max_k, dim=1, largest=True, sorted=True)
        # Flip batch_size, class_count as .view doesn't work on non-contiguous
        max_k_idx = max_k_idx.t()
        correct_for_task = max_k_idx.eq(label.view(1, -1).expand_as(max_k_idx))
        all_correct.add_(correct_for_task)

    multitask_topks_correct = [
        torch.ge(all_correct[:k].float().sum(0), task_count).float().sum(0) for k in ks
    ]

    return multitask_topks_correct