File size: 8,126 Bytes
3eb682b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
""" Adafactor Optimizer
Lifted from https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py
Original header/copyright below.
"""
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import math
class Adafactor(torch.optim.Optimizer):
"""Implements Adafactor algorithm.
This implementation is based on: `Adafactor: Adaptive Learning Rates with Sublinear Memory Cost`
(see https://arxiv.org/abs/1804.04235)
Note that this optimizer internally adjusts the learning rate depending on the
*scale_parameter*, *relative_step* and *warmup_init* options.
To use a manual (external) learning rate schedule you should set `scale_parameter=False` and
`relative_step=False`.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining parameter groups
lr (float, optional): external learning rate (default: None)
eps (tuple[float, float]): regularization constants for square gradient
and parameter scale respectively (default: (1e-30, 1e-3))
clip_threshold (float): threshold of root mean square of final gradient update (default: 1.0)
decay_rate (float): coefficient used to compute running averages of square gradient (default: -0.8)
beta1 (float): coefficient used for computing running averages of gradient (default: None)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
scale_parameter (bool): if True, learning rate is scaled by root mean square of parameter (default: True)
relative_step (bool): if True, time-dependent learning rate is computed
instead of external learning rate (default: True)
warmup_init (bool): time-dependent learning rate computation depends on
whether warm-up initialization is being used (default: False)
"""
def __init__(self, params, lr=None, eps=1e-30, eps_scale=1e-3, clip_threshold=1.0,
decay_rate=-0.8, betas=None, weight_decay=0.0, scale_parameter=True, warmup_init=False):
relative_step = lr is None
if warmup_init and not relative_step:
raise ValueError('warmup_init requires relative_step=True')
beta1 = None if betas is None else betas[0] # make it compat with standard betas arg
defaults = dict(lr=lr, eps=eps, eps_scale=eps_scale, clip_threshold=clip_threshold, decay_rate=decay_rate,
beta1=beta1, weight_decay=weight_decay, scale_parameter=scale_parameter,
relative_step=relative_step, warmup_init=warmup_init)
super(Adafactor, self).__init__(params, defaults)
@staticmethod
def _get_lr(param_group, param_state):
if param_group['relative_step']:
min_step = 1e-6 * param_state['step'] if param_group['warmup_init'] else 1e-2
lr_t = min(min_step, 1.0 / math.sqrt(param_state['step']))
param_scale = 1.0
if param_group['scale_parameter']:
param_scale = max(param_group['eps_scale'], param_state['RMS'])
param_group['lr'] = lr_t * param_scale
return param_group['lr']
@staticmethod
def _get_options(param_group, param_shape):
factored = len(param_shape) >= 2
use_first_moment = param_group['beta1'] is not None
return factored, use_first_moment
@staticmethod
def _rms(tensor):
return tensor.norm(2) / (tensor.numel() ** 0.5)
def _approx_sq_grad(self, exp_avg_sq_row, exp_avg_sq_col):
r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True)).rsqrt_().unsqueeze(-1)
c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt()
return torch.mul(r_factor, c_factor)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.dtype in {torch.float16, torch.bfloat16}:
grad = grad.float()
if grad.is_sparse:
raise RuntimeError('Adafactor does not support sparse gradients.')
state = self.state[p]
grad_shape = grad.shape
factored, use_first_moment = self._get_options(group, grad_shape)
# State Initialization
if len(state) == 0:
state['step'] = 0
if use_first_moment:
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(grad)
if factored:
state['exp_avg_sq_row'] = torch.zeros(grad_shape[:-1]).to(grad)
state['exp_avg_sq_col'] = torch.zeros(grad_shape[:-2] + grad_shape[-1:]).to(grad)
else:
state['exp_avg_sq'] = torch.zeros_like(grad)
state['RMS'] = 0
else:
if use_first_moment:
state['exp_avg'] = state['exp_avg'].to(grad)
if factored:
state['exp_avg_sq_row'] = state['exp_avg_sq_row'].to(grad)
state['exp_avg_sq_col'] = state['exp_avg_sq_col'].to(grad)
else:
state['exp_avg_sq'] = state['exp_avg_sq'].to(grad)
p_data_fp32 = p.data
if p.data.dtype in {torch.float16, torch.bfloat16}:
p_data_fp32 = p_data_fp32.float()
state['step'] += 1
state['RMS'] = self._rms(p_data_fp32)
lr_t = self._get_lr(group, state)
beta2t = 1.0 - math.pow(state['step'], group['decay_rate'])
update = grad ** 2 + group['eps']
if factored:
exp_avg_sq_row = state['exp_avg_sq_row']
exp_avg_sq_col = state['exp_avg_sq_col']
exp_avg_sq_row.mul_(beta2t).add_(1.0 - beta2t, update.mean(dim=-1))
exp_avg_sq_col.mul_(beta2t).add_(1.0 - beta2t, update.mean(dim=-2))
#exp_avg_sq_row.mul_(beta2t).add_(update.mean(dim=-1), alpha=1.0 - beta2t) # pytorch 1.6+
#exp_avg_sq_col.mul_(beta2t).add_(update.mean(dim=-2), alpha=1.0 - beta2t)
# Approximation of exponential moving average of square of gradient
update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col)
update.mul_(grad)
else:
exp_avg_sq = state['exp_avg_sq']
exp_avg_sq.mul_(beta2t).add_(1.0 - beta2t, update)
#exp_avg_sq.mul_(beta2t).add_(update, alpha=1.0 - beta2t) # pytorch 1.6+
update = exp_avg_sq.rsqrt().mul_(grad)
update.div_((self._rms(update) / group['clip_threshold']).clamp_(min=1.0))
update.mul_(lr_t)
if use_first_moment:
exp_avg = state['exp_avg']
exp_avg.mul_(group["beta1"]).add_(1 - group["beta1"], update)
#exp_avg.mul_(group['beta1']).add_(update, alpha=1 - group['beta1']) # pytorch 1.6+
update = exp_avg
if group['weight_decay'] != 0:
p_data_fp32.add_(-group["weight_decay"] * lr_t, p_data_fp32)
#p_data_fp32.add_(p_data_fp32, alpha=-group['weight_decay'] * lr_t) # pytorch 1.6+
p_data_fp32.add_(-update)
if p.data.dtype in {torch.float16, torch.bfloat16}:
p.data.copy_(p_data_fp32)
return loss |