File size: 26,168 Bytes
3eb682b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 |
from torch.utils.data import Dataset
import numpy as np
import random
import re
import torch
from torchvision import transforms
from PIL import Image
import json
from dataset.randaugment import RandomAugment
def pre_question(question,max_ques_words):
question = re.sub(
r"([,.'!?\"()*#:;~])",
'',
question.lower(),
).replace('-', ' ').replace('/', ' ')
question = question.rstrip(' ')
#truncate question
question_words = question.split(' ')
if len(question_words)>max_ques_words:
question = ' '.join(question_words[:max_ques_words])
return question
###############################################
# https://raw.githubusercontent.com/ylsung/VL_adapter/545fcbbdbbaec4c442de35567f6ae477ff4e8265/VL-T5/src/vqa_raw_data.py
from torch.utils.data import DataLoader, Dataset
from pathlib import Path
import json
import random
from tqdm import tqdm
import torch
import numpy as np
import re
from PIL import Image
from torch.utils.data.distributed import DistributedSampler
# {'what': 0.0, 'what color are the': 0.0, 'are there': 0.0, 'where is the': 0.0, 'how many': 0.0, 'what type of': 0.0, 'is the': 0.0, 'do': 0.0, 'are the': 0.0, 'none of the above': 0.0, 'are these': 0.0, 'is this a': 0.0, 'is the woman': 0.0, 'what color is the': 0.0, 'was': 0.0, 'what brand': 0.0, 'what is the': 0.0, 'what room is': 0.0, 'does this': 0.0, 'who is': 0.0, 'what are the': 0.0, 'where are the': 0.0, 'can you': 0.0, 'are': 0.0, 'what is the person': 0.0, 'has': 0.0, 'are they': 0.0, 'what is on the': 0.0, 'what is the man': 0.0, 'what kind of': 0.0, 'is the man': 0.0, 'is': 0.0, 'what is': 0.0, 'is that a': 0.0, 'what are': 0.0, 'is this': 0.0, 'what is in the': 0.0, 'how': 0.0, 'is there': 0.0, 'which': 0.0, 'is it': 0.0, 'how many people are': 0.0, 'what color is': 0.0, 'are there any': 0.0, 'what time': 0.0, 'what is the woman': 0.0, 'is there a': 0.0, 'is this person': 0.0, 'does the': 0.0, 'why': 0.0, 'what is the color of the': 0.0, 'what does the': 0.0, 'is this an': 0.0, 'is he': 0.0, 'what animal is': 0.0, 'how many people are in': 0.0, 'what color': 0.0, 'what is the name': 0.0, 'why is the': 0.0, 'do you': 0.0, 'could': 0.0, 'what sport is': 0.0, 'what is this': 0.0, 'is the person': 0.0, 'what number is': 0.0}
class VQAFineTuneDataset(Dataset):
def __init__(self, split='train', raw_dataset=None, rank=-1, topk=-1, verbose=True, args=None, mode='train',
data_dir=None, black_image=False, balanced_data=False, seed=42):
super().__init__()
dataset_dir = Path(data_dir)
coco_dir = dataset_dir.joinpath('COCO')
vg_dir = dataset_dir.joinpath('VG')
coco_img_dir = coco_dir.joinpath('images/')
coco_feature_dir = coco_dir.joinpath('features')
vqa_dir = dataset_dir.joinpath('vqa')
self.seed = seed
self.raw_dataset = raw_dataset
self.topk = topk
self.verbose = verbose
self.args = args
self.mode = mode
self.black_image = black_image
self.balanced_data = balanced_data
normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
self.train_transform = transforms.Compose([
transforms.RandomResizedCrop(args.image_size,scale=(0.5, 1.0), interpolation=Image.BICUBIC),
transforms.RandomHorizontalFlip(),
RandomAugment(2,7,isPIL=True,augs=['Identity','AutoContrast','Equalize','Brightness','Sharpness',
'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate']),
transforms.ToTensor(),
normalize,
])
self.test_transform = transforms.Compose([
transforms.Resize((args.image_size,args.image_size),interpolation=Image.BICUBIC),
transforms.ToTensor(),
normalize,
])
# Loading datasets to data
self.sources = split.split(',')
if self.verbose:
print('Data sources: ', self.sources)
self.answer_normalizer = VQAEvaluator()
self.img_ids_to_source = {}
data_info_dicts = []
for source in self.sources:
data_info_path = dataset_dir.joinpath(f'vqa/{source}.json')
with open(data_info_path) as f:
_data_info_dicts = json.load(f)
for _d in _data_info_dicts:
if 'vg_qa_full' == source:
self.img_ids_to_source[_d['img_id']] = 'vg'
elif 'train2014' in _d['img_id']:
self.img_ids_to_source[_d['img_id']] = 'train2014'
elif 'val2014' in _d['img_id']:
self.img_ids_to_source[_d['img_id']] = 'val2014'
elif 'test2014' in _d['img_id']:
self.img_ids_to_source[_d['img_id']] = 'test2014'
else:
self.img_ids_to_source[_d['img_id']] = source
_d['source'] = source
data_info_dicts.extend(_data_info_dicts)
if self.verbose:
print(f"Loaded {len(_data_info_dicts)} data from", source)
data = data_info_dicts
if isinstance(self.topk, float) and (0 < self.topk <= 1):
used_samples = int(self.topk * len(data))
random.seed(self.seed)
data = random.sample(data, used_samples)
if self.verbose:
print(f"Use only {len(data)} data")
elif self.topk > 0:
random.seed(self.seed)
random.shuffle(data)
if self.balanced_data and mode == 'train':
print("create balanced data")
qtype_2_data = {}
for d in data:
qtype = d['question_type']
if qtype not in qtype_2_data:
qtype_2_data[qtype] = [d]
else:
qtype_2_data[qtype].append(d)
qtype_len = self.topk//(len(qtype_2_data.keys()))
print(qtype_len, "sample per question type")
new_data = []
for k, v in qtype_2_data.items():
new_data+=v[:qtype_len]
data = new_data
data = data[:int(self.topk)]
if self.verbose:
print(f"Use only {len(data)} data", data[:2])
self.data = data
if self.verbose:
print("# all sentences:", len(self.data))
self.image_size = self.args.image_size #eval(self.args.image_size)
if mode == "train" and self.args.use_data_augmentation:
self.transform = self.train_transform
else:
self.transform = self.test_transform
self.source_to_h5 = {
'train2014': coco_img_dir.joinpath(f'train2014'),
'val2014': coco_img_dir.joinpath(f'val2014'),
'test2014': coco_img_dir.joinpath(f'test2014'),
}
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
out_dict = {}
out_dict['args'] = self.args
datum = self.data[idx]
###### Image ######
img_id = datum['img_id']
out_dict['img_id'] = img_id
source = self.img_ids_to_source[img_id]
path = self.source_to_h5[source].joinpath(f"{img_id}.jpg")
image = Image.open(path).convert('RGB')
out_dict["image"] = self.transform(image)
if self.black_image:
out_dict["image"] = torch.zeros_like(out_dict["image"])
###### Text #####
if 'sent' in datum:
sent = datum['sent']
elif 'question' in datum:
sent = datum['question']
question_id = datum['question_id']
out_dict['question_id'] = question_id
out_dict['sent'] = sent
if 'is_topk_optimal' in datum:
out_dict['is_topk_optimal'] = datum['is_topk_optimal']
if 'label' in datum:
label = datum['label']
out_dict['label'] = label
if self.args.raw_label:
# 10 raw answers
# ex) 'answers': [{'answer': 'net', 'answer_confidence': 'maybe', 'answer_id': 1},
# {'answer': 'net', 'answer_confidence': 'yes', 'answer_id': 2},
# {'answer': 'net', 'answer_confidence': 'yes', 'answer_id': 3},
# {'answer': 'netting', 'answer_confidence': 'yes', 'answer_id': 4},
# {'answer': 'net', 'answer_confidence': 'yes', 'answer_id': 5},
# {'answer': 'net', 'answer_confidence': 'yes', 'answer_id': 6},
# {'answer': 'mesh', 'answer_confidence': 'maybe', 'answer_id': 7},
# {'answer': 'net', 'answer_confidence': 'yes', 'answer_id': 8},
# {'answer': 'net', 'answer_confidence': 'yes', 'answer_id': 9},
# {'answer': 'net', 'answer_confidence': 'yes', 'answer_id': 10}],
answers = datum['answers']
answer = random.choice(answers)['answer']
if self.args.answer_normalize:
answer = self.answer_normalizer.normalize_answer(answer)
score = int(len(answers) > 0)
out_dict['answer'] = answer
out_dict['score'] = score
out_dict['all_answers'] = [a['answer'] for a in answers]
else:
# https://github.com/airsplay/lxmert/blob/master/src/pretrain/lxmert_pretrain.py#L191
answers = []
scores = []
for a, s in label.items():
answers.append(a)
scores.append(s)
score_sum = sum(scores)
if score_sum == 0:
answer = ''
score = 0.
else:
prob = [score / score_sum for score in scores]
choice = np.random.multinomial(1, prob).argmax()
answer = answers[choice]
score = scores[choice]
assert len(answer) > 0, (sent, label, choice, answer)
out_dict['answer'] = answer
out_dict['score'] = score
out_dict['all_answers'] = answers
return out_dict
def collate_fn(self, batch):
batch_entry = {}
args = batch[0]['args']
B = len(batch)
sentences = []
question_ids = []
answers = []
all_answers = []
img_ids = []
img_paths = []
labels = []
scores = []
is_topk_optimal = []
images = []
for i, entry in enumerate(batch):
images.append(entry["image"])
sentences.append(entry['sent'])
question_ids.append(entry['question_id'])
if 'answer' in entry:
answers.append(entry['answer'])
if 'all_answers' in entry:
all_answers.append(entry['all_answers'])
if 'score' in entry:
scores.append(entry['score'])
if 'label' in entry:
labels.append(entry['label'])
if 'is_topk_optimal' in entry:
is_topk_optimal.append(entry['is_topk_optimal'])
batch_entry['sent'] = sentences
batch_entry['question_ids'] = question_ids
batch_entry['answers'] = answers
batch_entry['all_answers'] = all_answers
batch_entry['scores'] = torch.FloatTensor(scores)
batch_entry['labels'] = labels
batch_entry['args'] = args
batch_entry['task'] = 'vqa'
batch_entry['images'] = torch.stack(images)
return batch_entry
def get_loader(args, split='karpathy_train', mode='train',
batch_size=32, workers=4, distributed=False, gpu=0, topk=-1,
verbose=False, data_dir='/data/mshukor/data', local_rank=None,
world_size=None, black_image=False, balanced_data=False, seed=42):
_dset = VQADataset(split, verbose, data_dir=data_dir)
dataset = VQAFineTuneDataset(
split,
raw_dataset=_dset,
rank=gpu,
topk=topk,
verbose=verbose,
args=args,
mode=mode, data_dir=data_dir, black_image=black_image,
balanced_data=balanced_data, seed=seed)
if distributed:
sampler = DistributedSampler(dataset, num_replicas=world_size, rank=local_rank)
else:
sampler = None
if mode == 'train':
loader = DataLoader(
dataset, batch_size=batch_size, shuffle=(sampler is None),
num_workers=workers, pin_memory=True, sampler=sampler,
collate_fn=dataset.collate_fn)
else:
loader = DataLoader(
dataset,
batch_size=batch_size,
num_workers=workers, pin_memory=True,
sampler=sampler,
shuffle=None if (sampler is not None) else False,
collate_fn=dataset.collate_fn,
drop_last=False)
if verbose:
loader.evaluator = VQAEvaluator(_dset)
loader.task = 'vqa'
return loader
class VQADataset:
"""
A VQA data example in json file:
{
"answer_type": "other",
"img_id": "COCO_train2014_000000458752",
"label": {
"net": 1
},
"question_id": 458752000,
"question_type": "what is this",
"sent": "What is this photo taken looking through?"
}
"""
def __init__(self, splits: str, verbose=True, data_dir='/data/mshukor/data'):
self.name = splits
self.splits = splits.split(',')
dataset_dir = Path(data_dir)
vqa_dir = dataset_dir.joinpath('vqa')
with open(dataset_dir.joinpath(f'vqa/v2_mscoco_train2014_annotations.json')) as f:
train2014_data = json.load(f)
with open(dataset_dir.joinpath(f'vqa/v2_mscoco_val2014_annotations.json')) as f:
val2014_data = json.load(f)
train2014_id2datum = {}
for datum in train2014_data['annotations']:
qid = datum['question_id']
train2014_id2datum[qid] = datum
val2014_id2datum = {}
for datum in val2014_data['annotations']:
qid = datum['question_id']
val2014_id2datum[qid] = datum
self.id2datum_gt = {**train2014_id2datum, **val2014_id2datum}
# Loading datasets
self.data = []
for split in self.splits:
self.data.extend(
json.load(open(vqa_dir.joinpath("%s.json" % split))))
if verbose:
print("Load %d data from split(s) %s." %
(len(self.data), self.name))
# Convert list to dict (for evaluation)
self.id2datum = {
datum['question_id']: datum
for datum in self.data
}
# Topk Answers
self.ans2label = json.load(
open(vqa_dir.joinpath("trainval_ans2label.json")))
self.label2ans = json.load(
open(vqa_dir.joinpath("trainval_label2ans.json")))
assert len(self.ans2label) == len(self.label2ans)
if verbose:
print('# Answers:', len(self.ans2label))
@property
def num_answers(self):
return len(self.ans2label)
def __len__(self):
return len(self.data)
class VQAEvaluator:
def __init__(self, dataset: VQADataset = None):
self.dataset = dataset
"""https://github.com/GT-Vision-Lab/VQA/blob/master/PythonEvaluationTools/vqaEvaluation/vqaEval.py"""
self.contractions = {"aint": "ain't", "arent": "aren't", "cant": "can't", "couldve": "could've", "couldnt": "couldn't", \
"couldn'tve": "couldn't've", "couldnt've": "couldn't've", "didnt": "didn't", "doesnt": "doesn't", "dont": "don't", "hadnt": "hadn't", \
"hadnt've": "hadn't've", "hadn'tve": "hadn't've", "hasnt": "hasn't", "havent": "haven't", "hed": "he'd", "hed've": "he'd've", \
"he'dve": "he'd've", "hes": "he's", "howd": "how'd", "howll": "how'll", "hows": "how's", "Id've": "I'd've", "I'dve": "I'd've", \
"Im": "I'm", "Ive": "I've", "isnt": "isn't", "itd": "it'd", "itd've": "it'd've", "it'dve": "it'd've", "itll": "it'll", "let's": "let's", \
"maam": "ma'am", "mightnt": "mightn't", "mightnt've": "mightn't've", "mightn'tve": "mightn't've", "mightve": "might've", \
"mustnt": "mustn't", "mustve": "must've", "neednt": "needn't", "notve": "not've", "oclock": "o'clock", "oughtnt": "oughtn't", \
"ow's'at": "'ow's'at", "'ows'at": "'ow's'at", "'ow'sat": "'ow's'at", "shant": "shan't", "shed've": "she'd've", "she'dve": "she'd've", \
"she's": "she's", "shouldve": "should've", "shouldnt": "shouldn't", "shouldnt've": "shouldn't've", "shouldn'tve": "shouldn't've", \
"somebody'd": "somebodyd", "somebodyd've": "somebody'd've", "somebody'dve": "somebody'd've", "somebodyll": "somebody'll", \
"somebodys": "somebody's", "someoned": "someone'd", "someoned've": "someone'd've", "someone'dve": "someone'd've", \
"someonell": "someone'll", "someones": "someone's", "somethingd": "something'd", "somethingd've": "something'd've", \
"something'dve": "something'd've", "somethingll": "something'll", "thats": "that's", "thered": "there'd", "thered've": "there'd've", \
"there'dve": "there'd've", "therere": "there're", "theres": "there's", "theyd": "they'd", "theyd've": "they'd've", \
"they'dve": "they'd've", "theyll": "they'll", "theyre": "they're", "theyve": "they've", "twas": "'twas", "wasnt": "wasn't", \
"wed've": "we'd've", "we'dve": "we'd've", "weve": "we've", "werent": "weren't", "whatll": "what'll", "whatre": "what're", \
"whats": "what's", "whatve": "what've", "whens": "when's", "whered": "where'd", "wheres": "where's", "whereve": "where've", \
"whod": "who'd", "whod've": "who'd've", "who'dve": "who'd've", "wholl": "who'll", "whos": "who's", "whove": "who've", "whyll": "why'll", \
"whyre": "why're", "whys": "why's", "wont": "won't", "wouldve": "would've", "wouldnt": "wouldn't", "wouldnt've": "wouldn't've", \
"wouldn'tve": "wouldn't've", "yall": "y'all", "yall'll": "y'all'll", "y'allll": "y'all'll", "yall'd've": "y'all'd've", \
"y'alld've": "y'all'd've", "y'all'dve": "y'all'd've", "youd": "you'd", "youd've": "you'd've", "you'dve": "you'd've", \
"youll": "you'll", "youre": "you're", "youve": "you've"}
self.manualMap = { 'none': '0',
'zero': '0',
'one': '1',
'two': '2',
'three': '3',
'four': '4',
'five': '5',
'six': '6',
'seven': '7',
'eight': '8',
'nine': '9',
'ten': '10'
}
self.articles = ['a',
'an',
'the'
]
self.periodStrip = re.compile("(?!<=\d)(\.)(?!\d)")
self.commaStrip = re.compile("(\d)(\,)(\d)")
self.punct = [';', r"/", '[', ']', '"', '{', '}',
'(', ')', '=', '+', '\\', '_', '-',
'>', '<', '@', '`', ',', '?', '!']
self.n = 2
def evaluate(self, quesid2ans: dict, normalize_answer=False):
score = 0.
for quesid, ans in quesid2ans.items():
datum = self.dataset.id2datum[quesid]
label = datum['label']
if ans in label:
score += label[ans]
return score / len(quesid2ans)
def dump_result(self, quesid2ans: dict, path):
"""
Dump results to a json file, which could be submitted to the VQA online evaluation.
VQA json file submission requirement:
results = [result]
result = {
"question_id": int,
"answer": str
}
:param quesid2ans: dict of quesid --> ans
:param path: The desired path of saved file.
"""
with open(path, 'w') as f:
result = []
for ques_id, ans in quesid2ans.items():
result.append({
'question_id': ques_id,
'answer': ans
})
json.dump(result, f, indent=4, sort_keys=True)
def evaluate_raw(self, quesid2ans: dict, is_topk_optimal=None):
"""https://github.com/GT-Vision-Lab/VQA/blob/master/PythonEvaluationTools/vqaEvaluation/vqaEval.py"""
gts = self.dataset.id2datum_gt
self.accuracy = {}
self.evalQA = {}
self.evalQuesType = {}
self.evalAnsType = {}
accQA = []
accQuesType = {}
accAnsType = {}
# print("Computing accuracy")
for quesId, resAns in tqdm(quesid2ans.items(), total=len(quesid2ans), ncols=80):
quesId = int(quesId)
datum = self.dataset.id2datum[quesId]
if is_topk_optimal is None:
pass
elif 'is_topk_optimal' in datum:
if datum['is_topk_optimal'] != is_topk_optimal:
continue
resAns = resAns.replace('\n', ' ')
resAns = resAns.replace('\t', ' ')
resAns = resAns.strip()
resAns = self.processPunctuation(resAns)
resAns = self.processDigitArticle(resAns)
gtAcc = []
gtAnswers = [ans['answer'] for ans in gts[quesId]['answers']]
if len(set(gtAnswers)) > 1:
for ansDic in gts[quesId]['answers']:
ansDic['answer'] = self.processPunctuation(ansDic['answer'])
for gtAnsDatum in gts[quesId]['answers']:
otherGTAns = [item for item in gts[quesId]['answers'] if item!=gtAnsDatum]
matchingAns = [item for item in otherGTAns if item['answer']==resAns]
acc = min(1, float(len(matchingAns))/3)
gtAcc.append(acc)
quesType = gts[quesId]['question_type']
ansType = gts[quesId]['answer_type']
avgGTAcc = float(sum(gtAcc))/len(gtAcc)
accQA.append(avgGTAcc)
if quesType not in accQuesType:
accQuesType[quesType] = []
accQuesType[quesType].append(avgGTAcc)
if ansType not in accAnsType:
accAnsType[ansType] = []
accAnsType[ansType].append(avgGTAcc)
self.setEvalQA(quesId, avgGTAcc)
self.setEvalQuesType(quesId, quesType, avgGTAcc)
self.setEvalAnsType(quesId, ansType, avgGTAcc)
if len(accQA) == 0:
return {
'overall': 0,
'perQuestionType': {},
'perAnswerType': {}
}
else:
self.setAccuracy(accQA, accQuesType, accAnsType)
return self.accuracy
def normalize_answer(self, resAns):
resAns = resAns.replace('\n', ' ')
resAns = resAns.replace('\t', ' ')
resAns = resAns.strip()
resAns = self.processPunctuation(resAns)
resAns = self.processDigitArticle(resAns)
resAns = resAns.replace(',', '')
return resAns
def processPunctuation(self, inText):
outText = inText
for p in self.punct:
if (p + ' ' in inText or ' ' + p in inText) or (re.search(self.commaStrip, inText) != None):
outText = outText.replace(p, '')
else:
outText = outText.replace(p, ' ')
outText = self.periodStrip.sub("",
outText,
re.UNICODE)
return outText
def processDigitArticle(self, inText):
outText = []
tempText = inText.lower().split()
for word in tempText:
word = self.manualMap.setdefault(word, word)
if word not in self.articles:
outText.append(word)
else:
pass
for wordId, word in enumerate(outText):
if word in self.contractions:
outText[wordId] = self.contractions[word]
outText = ' '.join(outText)
return outText
def setEvalQA(self, quesId, acc):
self.evalQA[quesId] = round(100*acc, self.n)
def setEvalQuesType(self, quesId, quesType, acc):
if quesType not in self.evalQuesType:
self.evalQuesType[quesType] = {}
self.evalQuesType[quesType][quesId] = round(100*acc, self.n)
def setEvalAnsType(self, quesId, ansType, acc):
if ansType not in self.evalAnsType:
self.evalAnsType[ansType] = {}
self.evalAnsType[ansType][quesId] = round(100*acc, self.n)
def setAccuracy(self, accQA, accQuesType, accAnsType):
self.accuracy['overall'] = round(100*float(sum(accQA))/len(accQA), self.n)
self.accuracy['perQuestionType'] = {quesType: round(100*float(sum(accQuesType[quesType]))/len(accQuesType[quesType]), self.n) for quesType in accQuesType}
self.accuracy['perAnswerType'] = {ansType: round(100*float(sum(accAnsType[ansType]))/len(accAnsType[ansType]), self.n) for ansType in accAnsType}
|