File size: 28,674 Bytes
3eb682b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
"""Video models."""
import math
import torch
import torch.nn as nn
import timesformer.utils.weight_init_helper as init_helper
from timesformer.models.batchnorm_helper import get_norm
from . import head_helper, resnet_helper, stem_helper
from .build import MODEL_REGISTRY
import math
from torch.nn import ReplicationPad3d
from torch import einsum
from einops import rearrange, reduce, repeat
import copy
import numpy as np
from timesformer.models.vit import vit_base_patch16_224
# Number of blocks for different stages given the model depth.
_MODEL_STAGE_DEPTH = {50: (3, 4, 6, 3), 101: (3, 4, 23, 3)}
# Basis of temporal kernel sizes for each of the stage.
_TEMPORAL_KERNEL_BASIS = {
"c2d": [
[[1]], # conv1 temporal kernel.
[[1]], # res2 temporal kernel.
[[1]], # res3 temporal kernel.
[[1]], # res4 temporal kernel.
[[1]], # res5 temporal kernel.
],
"c2d_nopool": [
[[1]], # conv1 temporal kernel.
[[1]], # res2 temporal kernel.
[[1]], # res3 temporal kernel.
[[1]], # res4 temporal kernel.
[[1]], # res5 temporal kernel.
],
"i3d": [
[[5]], # conv1 temporal kernel.
[[3]], # res2 temporal kernel.
[[3, 1]], # res3 temporal kernel.
[[3, 1]], # res4 temporal kernel.
[[1, 3]], # res5 temporal kernel.
],
"i3d_nopool": [
[[5]], # conv1 temporal kernel.
[[3]], # res2 temporal kernel.
[[3, 1]], # res3 temporal kernel.
[[3, 1]], # res4 temporal kernel.
[[1, 3]], # res5 temporal kernel.
],
"slow": [
[[1]], # conv1 temporal kernel.
[[1]], # res2 temporal kernel.
[[1]], # res3 temporal kernel.
[[3]], # res4 temporal kernel.
[[3]], # res5 temporal kernel.
],
"slowfast": [
[[1], [5]], # conv1 temporal kernel for slow and fast pathway.
[[1], [3]], # res2 temporal kernel for slow and fast pathway.
[[1], [3]], # res3 temporal kernel for slow and fast pathway.
[[3], [3]], # res4 temporal kernel for slow and fast pathway.
[[3], [3]], # res5 temporal kernel for slow and fast pathway.
],
"x3d": [
[[5]], # conv1 temporal kernels.
[[3]], # res2 temporal kernels.
[[3]], # res3 temporal kernels.
[[3]], # res4 temporal kernels.
[[3]], # res5 temporal kernels.
],
}
_POOL1 = {
"c2d": [[2, 1, 1]],
"c2d_nopool": [[1, 1, 1]],
"i3d": [[2, 1, 1]],
"i3d_nopool": [[1, 1, 1]],
"slow": [[1, 1, 1]],
"slowfast": [[1, 1, 1], [1, 1, 1]],
"x3d": [[1, 1, 1]],
}
class FuseFastToSlow(nn.Module):
"""
Fuses the information from the Fast pathway to the Slow pathway. Given the
tensors from Slow pathway and Fast pathway, fuse information from Fast to
Slow, then return the fused tensors from Slow and Fast pathway in order.
"""
def __init__(
self,
dim_in,
fusion_conv_channel_ratio,
fusion_kernel,
alpha,
eps=1e-5,
bn_mmt=0.1,
inplace_relu=True,
norm_module=nn.BatchNorm3d,
):
"""
Args:
dim_in (int): the channel dimension of the input.
fusion_conv_channel_ratio (int): channel ratio for the convolution
used to fuse from Fast pathway to Slow pathway.
fusion_kernel (int): kernel size of the convolution used to fuse
from Fast pathway to Slow pathway.
alpha (int): the frame rate ratio between the Fast and Slow pathway.
eps (float): epsilon for batch norm.
bn_mmt (float): momentum for batch norm. Noted that BN momentum in
PyTorch = 1 - BN momentum in Caffe2.
inplace_relu (bool): if True, calculate the relu on the original
input without allocating new memory.
norm_module (nn.Module): nn.Module for the normalization layer. The
default is nn.BatchNorm3d.
"""
super(FuseFastToSlow, self).__init__()
self.conv_f2s = nn.Conv3d(
dim_in,
dim_in * fusion_conv_channel_ratio,
kernel_size=[fusion_kernel, 1, 1],
stride=[alpha, 1, 1],
padding=[fusion_kernel // 2, 0, 0],
bias=False,
)
self.bn = norm_module(
num_features=dim_in * fusion_conv_channel_ratio,
eps=eps,
momentum=bn_mmt,
)
self.relu = nn.ReLU(inplace_relu)
def forward(self, x):
x_s = x[0]
x_f = x[1]
fuse = self.conv_f2s(x_f)
fuse = self.bn(fuse)
fuse = self.relu(fuse)
x_s_fuse = torch.cat([x_s, fuse], 1)
return [x_s_fuse, x_f]
@MODEL_REGISTRY.register()
class SlowFast(nn.Module):
"""
SlowFast model builder for SlowFast network.
Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He.
"SlowFast networks for video recognition."
https://arxiv.org/pdf/1812.03982.pdf
"""
def __init__(self, cfg):
"""
The `__init__` method of any subclass should also contain these
arguments.
Args:
cfg (CfgNode): model building configs, details are in the
comments of the config file.
"""
super(SlowFast, self).__init__()
self.norm_module = get_norm(cfg)
self.enable_detection = cfg.DETECTION.ENABLE
self.num_pathways = 2
self._construct_network(cfg)
init_helper.init_weights(
self, cfg.MODEL.FC_INIT_STD, cfg.RESNET.ZERO_INIT_FINAL_BN
)
def _construct_network(self, cfg):
"""
Builds a SlowFast model. The first pathway is the Slow pathway and the
second pathway is the Fast pathway.
Args:
cfg (CfgNode): model building configs, details are in the
comments of the config file.
"""
assert cfg.MODEL.ARCH in _POOL1.keys()
pool_size = _POOL1[cfg.MODEL.ARCH]
assert len({len(pool_size), self.num_pathways}) == 1
assert cfg.RESNET.DEPTH in _MODEL_STAGE_DEPTH.keys()
(d2, d3, d4, d5) = _MODEL_STAGE_DEPTH[cfg.RESNET.DEPTH]
num_groups = cfg.RESNET.NUM_GROUPS
width_per_group = cfg.RESNET.WIDTH_PER_GROUP
dim_inner = num_groups * width_per_group
out_dim_ratio = (
cfg.SLOWFAST.BETA_INV // cfg.SLOWFAST.FUSION_CONV_CHANNEL_RATIO
)
temp_kernel = _TEMPORAL_KERNEL_BASIS[cfg.MODEL.ARCH]
self.s1 = stem_helper.VideoModelStem(
dim_in=cfg.DATA.INPUT_CHANNEL_NUM,
dim_out=[width_per_group, width_per_group // cfg.SLOWFAST.BETA_INV],
kernel=[temp_kernel[0][0] + [7, 7], temp_kernel[0][1] + [7, 7]],
stride=[[1, 2, 2]] * 2,
padding=[
[temp_kernel[0][0][0] // 2, 3, 3],
[temp_kernel[0][1][0] // 2, 3, 3],
],
norm_module=self.norm_module,
)
self.s1_fuse = FuseFastToSlow(
width_per_group // cfg.SLOWFAST.BETA_INV,
cfg.SLOWFAST.FUSION_CONV_CHANNEL_RATIO,
cfg.SLOWFAST.FUSION_KERNEL_SZ,
cfg.SLOWFAST.ALPHA,
norm_module=self.norm_module,
)
self.s2 = resnet_helper.ResStage(
dim_in=[
width_per_group + width_per_group // out_dim_ratio,
width_per_group // cfg.SLOWFAST.BETA_INV,
],
dim_out=[
width_per_group * 4,
width_per_group * 4 // cfg.SLOWFAST.BETA_INV,
],
dim_inner=[dim_inner, dim_inner // cfg.SLOWFAST.BETA_INV],
temp_kernel_sizes=temp_kernel[1],
stride=cfg.RESNET.SPATIAL_STRIDES[0],
num_blocks=[d2] * 2,
num_groups=[num_groups] * 2,
num_block_temp_kernel=cfg.RESNET.NUM_BLOCK_TEMP_KERNEL[0],
nonlocal_inds=cfg.NONLOCAL.LOCATION[0],
nonlocal_group=cfg.NONLOCAL.GROUP[0],
nonlocal_pool=cfg.NONLOCAL.POOL[0],
instantiation=cfg.NONLOCAL.INSTANTIATION,
trans_func_name=cfg.RESNET.TRANS_FUNC,
dilation=cfg.RESNET.SPATIAL_DILATIONS[0],
norm_module=self.norm_module,
)
self.s2_fuse = FuseFastToSlow(
width_per_group * 4 // cfg.SLOWFAST.BETA_INV,
cfg.SLOWFAST.FUSION_CONV_CHANNEL_RATIO,
cfg.SLOWFAST.FUSION_KERNEL_SZ,
cfg.SLOWFAST.ALPHA,
norm_module=self.norm_module,
)
for pathway in range(self.num_pathways):
pool = nn.MaxPool3d(
kernel_size=pool_size[pathway],
stride=pool_size[pathway],
padding=[0, 0, 0],
)
self.add_module("pathway{}_pool".format(pathway), pool)
self.s3 = resnet_helper.ResStage(
dim_in=[
width_per_group * 4 + width_per_group * 4 // out_dim_ratio,
width_per_group * 4 // cfg.SLOWFAST.BETA_INV,
],
dim_out=[
width_per_group * 8,
width_per_group * 8 // cfg.SLOWFAST.BETA_INV,
],
dim_inner=[dim_inner * 2, dim_inner * 2 // cfg.SLOWFAST.BETA_INV],
temp_kernel_sizes=temp_kernel[2],
stride=cfg.RESNET.SPATIAL_STRIDES[1],
num_blocks=[d3] * 2,
num_groups=[num_groups] * 2,
num_block_temp_kernel=cfg.RESNET.NUM_BLOCK_TEMP_KERNEL[1],
nonlocal_inds=cfg.NONLOCAL.LOCATION[1],
nonlocal_group=cfg.NONLOCAL.GROUP[1],
nonlocal_pool=cfg.NONLOCAL.POOL[1],
instantiation=cfg.NONLOCAL.INSTANTIATION,
trans_func_name=cfg.RESNET.TRANS_FUNC,
dilation=cfg.RESNET.SPATIAL_DILATIONS[1],
norm_module=self.norm_module,
)
self.s3_fuse = FuseFastToSlow(
width_per_group * 8 // cfg.SLOWFAST.BETA_INV,
cfg.SLOWFAST.FUSION_CONV_CHANNEL_RATIO,
cfg.SLOWFAST.FUSION_KERNEL_SZ,
cfg.SLOWFAST.ALPHA,
norm_module=self.norm_module,
)
self.s4 = resnet_helper.ResStage(
dim_in=[
width_per_group * 8 + width_per_group * 8 // out_dim_ratio,
width_per_group * 8 // cfg.SLOWFAST.BETA_INV,
],
dim_out=[
width_per_group * 16,
width_per_group * 16 // cfg.SLOWFAST.BETA_INV,
],
dim_inner=[dim_inner * 4, dim_inner * 4 // cfg.SLOWFAST.BETA_INV],
temp_kernel_sizes=temp_kernel[3],
stride=cfg.RESNET.SPATIAL_STRIDES[2],
num_blocks=[d4] * 2,
num_groups=[num_groups] * 2,
num_block_temp_kernel=cfg.RESNET.NUM_BLOCK_TEMP_KERNEL[2],
nonlocal_inds=cfg.NONLOCAL.LOCATION[2],
nonlocal_group=cfg.NONLOCAL.GROUP[2],
nonlocal_pool=cfg.NONLOCAL.POOL[2],
instantiation=cfg.NONLOCAL.INSTANTIATION,
trans_func_name=cfg.RESNET.TRANS_FUNC,
dilation=cfg.RESNET.SPATIAL_DILATIONS[2],
norm_module=self.norm_module,
)
self.s4_fuse = FuseFastToSlow(
width_per_group * 16 // cfg.SLOWFAST.BETA_INV,
cfg.SLOWFAST.FUSION_CONV_CHANNEL_RATIO,
cfg.SLOWFAST.FUSION_KERNEL_SZ,
cfg.SLOWFAST.ALPHA,
norm_module=self.norm_module,
)
self.s5 = resnet_helper.ResStage(
dim_in=[
width_per_group * 16 + width_per_group * 16 // out_dim_ratio,
width_per_group * 16 // cfg.SLOWFAST.BETA_INV,
],
dim_out=[
width_per_group * 32,
width_per_group * 32 // cfg.SLOWFAST.BETA_INV,
],
dim_inner=[dim_inner * 8, dim_inner * 8 // cfg.SLOWFAST.BETA_INV],
temp_kernel_sizes=temp_kernel[4],
stride=cfg.RESNET.SPATIAL_STRIDES[3],
num_blocks=[d5] * 2,
num_groups=[num_groups] * 2,
num_block_temp_kernel=cfg.RESNET.NUM_BLOCK_TEMP_KERNEL[3],
nonlocal_inds=cfg.NONLOCAL.LOCATION[3],
nonlocal_group=cfg.NONLOCAL.GROUP[3],
nonlocal_pool=cfg.NONLOCAL.POOL[3],
instantiation=cfg.NONLOCAL.INSTANTIATION,
trans_func_name=cfg.RESNET.TRANS_FUNC,
dilation=cfg.RESNET.SPATIAL_DILATIONS[3],
norm_module=self.norm_module,
)
if cfg.DETECTION.ENABLE:
self.head = head_helper.ResNetRoIHead(
dim_in=[
width_per_group * 32,
width_per_group * 32 // cfg.SLOWFAST.BETA_INV,
],
num_classes=cfg.MODEL.NUM_CLASSES,
pool_size=[
[
cfg.DATA.NUM_FRAMES
// cfg.SLOWFAST.ALPHA
// pool_size[0][0],
1,
1,
],
[cfg.DATA.NUM_FRAMES // pool_size[1][0], 1, 1],
],
resolution=[[cfg.DETECTION.ROI_XFORM_RESOLUTION] * 2] * 2,
scale_factor=[cfg.DETECTION.SPATIAL_SCALE_FACTOR] * 2,
dropout_rate=cfg.MODEL.DROPOUT_RATE,
act_func=cfg.MODEL.HEAD_ACT,
aligned=cfg.DETECTION.ALIGNED,
)
else:
head = head_helper.ResNetBasicHead(
dim_in=[
width_per_group * 32,
width_per_group * 32 // cfg.SLOWFAST.BETA_INV,
],
num_classes=cfg.MODEL.NUM_CLASSES,
pool_size=[None, None]
if cfg.MULTIGRID.SHORT_CYCLE
else [
[
cfg.DATA.NUM_FRAMES
// cfg.SLOWFAST.ALPHA
// pool_size[0][0],
cfg.DATA.TRAIN_CROP_SIZE // 32 // pool_size[0][1],
cfg.DATA.TRAIN_CROP_SIZE // 32 // pool_size[0][2],
],
[
cfg.DATA.NUM_FRAMES // pool_size[1][0],
cfg.DATA.TRAIN_CROP_SIZE // 32 // pool_size[1][1],
cfg.DATA.TRAIN_CROP_SIZE // 32 // pool_size[1][2],
],
], # None for AdaptiveAvgPool3d((1, 1, 1))
dropout_rate=cfg.MODEL.DROPOUT_RATE,
act_func=cfg.MODEL.HEAD_ACT,
)
self.head_name = "head{}".format(cfg.TASK)
self.add_module(self.head_name, head)
def forward(self, x, bboxes=None):
x = self.s1(x)
x = self.s1_fuse(x)
x = self.s2(x)
x = self.s2_fuse(x)
for pathway in range(self.num_pathways):
pool = getattr(self, "pathway{}_pool".format(pathway))
x[pathway] = pool(x[pathway])
x = self.s3(x)
x = self.s3_fuse(x)
x = self.s4(x)
x = self.s4_fuse(x)
x = self.s5(x)
head = getattr(self, self.head_name)
if self.enable_detection:
x = head(x, bboxes)
else:
x = head(x)
return x
@MODEL_REGISTRY.register()
class ResNet(nn.Module):
"""
ResNet model builder. It builds a ResNet like network backbone without
lateral connection (C2D, I3D, Slow).
Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He.
"SlowFast networks for video recognition."
https://arxiv.org/pdf/1812.03982.pdf
Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He.
"Non-local neural networks."
https://arxiv.org/pdf/1711.07971.pdf
"""
def __init__(self, cfg):
"""
The `__init__` method of any subclass should also contain these
arguments.
Args:
cfg (CfgNode): model building configs, details are in the
comments of the config file.
"""
super(ResNet, self).__init__()
self.norm_module = get_norm(cfg)
self.enable_detection = cfg.DETECTION.ENABLE
self.num_pathways = 1
self._construct_network(cfg)
init_helper.init_weights(
self, cfg.MODEL.FC_INIT_STD, cfg.RESNET.ZERO_INIT_FINAL_BN
)
def _construct_network(self, cfg):
"""
Builds a single pathway ResNet model.
Args:
cfg (CfgNode): model building configs, details are in the
comments of the config file.
"""
assert cfg.MODEL.ARCH in _POOL1.keys()
pool_size = _POOL1[cfg.MODEL.ARCH]
assert len({len(pool_size), self.num_pathways}) == 1
assert cfg.RESNET.DEPTH in _MODEL_STAGE_DEPTH.keys()
(d2, d3, d4, d5) = _MODEL_STAGE_DEPTH[cfg.RESNET.DEPTH]
num_groups = cfg.RESNET.NUM_GROUPS
width_per_group = cfg.RESNET.WIDTH_PER_GROUP
dim_inner = num_groups * width_per_group
temp_kernel = _TEMPORAL_KERNEL_BASIS[cfg.MODEL.ARCH]
self.s1 = stem_helper.VideoModelStem(
dim_in=cfg.DATA.INPUT_CHANNEL_NUM,
dim_out=[width_per_group],
kernel=[temp_kernel[0][0] + [7, 7]],
stride=[[1, 2, 2]],
padding=[[temp_kernel[0][0][0] // 2, 3, 3]],
norm_module=self.norm_module,
)
self.s2 = resnet_helper.ResStage(
dim_in=[width_per_group],
dim_out=[width_per_group * 4],
dim_inner=[dim_inner],
temp_kernel_sizes=temp_kernel[1],
stride=cfg.RESNET.SPATIAL_STRIDES[0],
num_blocks=[d2],
num_groups=[num_groups],
num_block_temp_kernel=cfg.RESNET.NUM_BLOCK_TEMP_KERNEL[0],
nonlocal_inds=cfg.NONLOCAL.LOCATION[0],
nonlocal_group=cfg.NONLOCAL.GROUP[0],
nonlocal_pool=cfg.NONLOCAL.POOL[0],
instantiation=cfg.NONLOCAL.INSTANTIATION,
trans_func_name=cfg.RESNET.TRANS_FUNC,
stride_1x1=cfg.RESNET.STRIDE_1X1,
inplace_relu=cfg.RESNET.INPLACE_RELU,
dilation=cfg.RESNET.SPATIAL_DILATIONS[0],
norm_module=self.norm_module,
)
for pathway in range(self.num_pathways):
pool = nn.MaxPool3d(
kernel_size=pool_size[pathway],
stride=pool_size[pathway],
padding=[0, 0, 0],
)
self.add_module("pathway{}_pool".format(pathway), pool)
self.s3 = resnet_helper.ResStage(
dim_in=[width_per_group * 4],
dim_out=[width_per_group * 8],
dim_inner=[dim_inner * 2],
temp_kernel_sizes=temp_kernel[2],
stride=cfg.RESNET.SPATIAL_STRIDES[1],
num_blocks=[d3],
num_groups=[num_groups],
num_block_temp_kernel=cfg.RESNET.NUM_BLOCK_TEMP_KERNEL[1],
nonlocal_inds=cfg.NONLOCAL.LOCATION[1],
nonlocal_group=cfg.NONLOCAL.GROUP[1],
nonlocal_pool=cfg.NONLOCAL.POOL[1],
instantiation=cfg.NONLOCAL.INSTANTIATION,
trans_func_name=cfg.RESNET.TRANS_FUNC,
stride_1x1=cfg.RESNET.STRIDE_1X1,
inplace_relu=cfg.RESNET.INPLACE_RELU,
dilation=cfg.RESNET.SPATIAL_DILATIONS[1],
norm_module=self.norm_module,
)
self.s4 = resnet_helper.ResStage(
dim_in=[width_per_group * 8],
dim_out=[width_per_group * 16],
dim_inner=[dim_inner * 4],
temp_kernel_sizes=temp_kernel[3],
stride=cfg.RESNET.SPATIAL_STRIDES[2],
num_blocks=[d4],
num_groups=[num_groups],
num_block_temp_kernel=cfg.RESNET.NUM_BLOCK_TEMP_KERNEL[2],
nonlocal_inds=cfg.NONLOCAL.LOCATION[2],
nonlocal_group=cfg.NONLOCAL.GROUP[2],
nonlocal_pool=cfg.NONLOCAL.POOL[2],
instantiation=cfg.NONLOCAL.INSTANTIATION,
trans_func_name=cfg.RESNET.TRANS_FUNC,
stride_1x1=cfg.RESNET.STRIDE_1X1,
inplace_relu=cfg.RESNET.INPLACE_RELU,
dilation=cfg.RESNET.SPATIAL_DILATIONS[2],
norm_module=self.norm_module,
)
self.s5 = resnet_helper.ResStage(
dim_in=[width_per_group * 16],
dim_out=[width_per_group * 32],
dim_inner=[dim_inner * 8],
temp_kernel_sizes=temp_kernel[4],
stride=cfg.RESNET.SPATIAL_STRIDES[3],
num_blocks=[d5],
num_groups=[num_groups],
num_block_temp_kernel=cfg.RESNET.NUM_BLOCK_TEMP_KERNEL[3],
nonlocal_inds=cfg.NONLOCAL.LOCATION[3],
nonlocal_group=cfg.NONLOCAL.GROUP[3],
nonlocal_pool=cfg.NONLOCAL.POOL[3],
instantiation=cfg.NONLOCAL.INSTANTIATION,
trans_func_name=cfg.RESNET.TRANS_FUNC,
stride_1x1=cfg.RESNET.STRIDE_1X1,
inplace_relu=cfg.RESNET.INPLACE_RELU,
dilation=cfg.RESNET.SPATIAL_DILATIONS[3],
norm_module=self.norm_module,
)
if self.enable_detection:
self.head = head_helper.ResNetRoIHead(
dim_in=[width_per_group * 32],
num_classes=cfg.MODEL.NUM_CLASSES,
pool_size=[[cfg.DATA.NUM_FRAMES // pool_size[0][0], 1, 1]],
resolution=[[cfg.DETECTION.ROI_XFORM_RESOLUTION] * 2],
scale_factor=[cfg.DETECTION.SPATIAL_SCALE_FACTOR],
dropout_rate=cfg.MODEL.DROPOUT_RATE,
act_func=cfg.MODEL.HEAD_ACT,
aligned=cfg.DETECTION.ALIGNED,
)
else:
head = head_helper.ResNetBasicHead(
dim_in=[width_per_group * 32],
num_classes=cfg.MODEL.NUM_CLASSES,
pool_size=[None, None]
if cfg.MULTIGRID.SHORT_CYCLE
else [
[
cfg.DATA.NUM_FRAMES // pool_size[0][0],
cfg.DATA.TRAIN_CROP_SIZE // 32 // pool_size[0][1],
cfg.DATA.TRAIN_CROP_SIZE // 32 // pool_size[0][2],
]
], # None for AdaptiveAvgPool3d((1, 1, 1))
dropout_rate=cfg.MODEL.DROPOUT_RATE,
act_func=cfg.MODEL.HEAD_ACT,
)
self.head_name = "head{}".format(cfg.TASK)
self.add_module(self.head_name, head)
def forward(self, x, bboxes=None):
x = self.s1(x)
x = self.s2(x)
for pathway in range(self.num_pathways):
pool = getattr(self, "pathway{}_pool".format(pathway))
x[pathway] = pool(x[pathway])
x = self.s3(x)
x = self.s4(x)
x = self.s5(x)
head = getattr(self, self.head_name)
if self.enable_detection:
x = head(x, bboxes)
else:
x = head(x)
return x
@MODEL_REGISTRY.register()
class X3D(nn.Module):
"""
X3D model builder. It builds a X3D network backbone, which is a ResNet.
Christoph Feichtenhofer.
"X3D: Expanding Architectures for Efficient Video Recognition."
https://arxiv.org/abs/2004.04730
"""
def __init__(self, cfg):
"""
The `__init__` method of any subclass should also contain these
arguments.
Args:
cfg (CfgNode): model building configs, details are in the
comments of the config file.
"""
super(X3D, self).__init__()
self.norm_module = get_norm(cfg)
self.enable_detection = cfg.DETECTION.ENABLE
self.num_pathways = 1
exp_stage = 2.0
self.dim_c1 = cfg.X3D.DIM_C1
self.dim_res2 = (
self._round_width(self.dim_c1, exp_stage, divisor=8)
if cfg.X3D.SCALE_RES2
else self.dim_c1
)
self.dim_res3 = self._round_width(self.dim_res2, exp_stage, divisor=8)
self.dim_res4 = self._round_width(self.dim_res3, exp_stage, divisor=8)
self.dim_res5 = self._round_width(self.dim_res4, exp_stage, divisor=8)
self.block_basis = [
# blocks, c, stride
[1, self.dim_res2, 2],
[2, self.dim_res3, 2],
[5, self.dim_res4, 2],
[3, self.dim_res5, 2],
]
self._construct_network(cfg)
init_helper.init_weights(
self, cfg.MODEL.FC_INIT_STD, cfg.RESNET.ZERO_INIT_FINAL_BN
)
def _round_width(self, width, multiplier, min_depth=8, divisor=8):
"""Round width of filters based on width multiplier."""
if not multiplier:
return width
width *= multiplier
min_depth = min_depth or divisor
new_filters = max(
min_depth, int(width + divisor / 2) // divisor * divisor
)
if new_filters < 0.9 * width:
new_filters += divisor
return int(new_filters)
def _round_repeats(self, repeats, multiplier):
"""Round number of layers based on depth multiplier."""
multiplier = multiplier
if not multiplier:
return repeats
return int(math.ceil(multiplier * repeats))
def _construct_network(self, cfg):
"""
Builds a single pathway X3D model.
Args:
cfg (CfgNode): model building configs, details are in the
comments of the config file.
"""
assert cfg.MODEL.ARCH in _POOL1.keys()
assert cfg.RESNET.DEPTH in _MODEL_STAGE_DEPTH.keys()
(d2, d3, d4, d5) = _MODEL_STAGE_DEPTH[cfg.RESNET.DEPTH]
num_groups = cfg.RESNET.NUM_GROUPS
width_per_group = cfg.RESNET.WIDTH_PER_GROUP
dim_inner = num_groups * width_per_group
w_mul = cfg.X3D.WIDTH_FACTOR
d_mul = cfg.X3D.DEPTH_FACTOR
dim_res1 = self._round_width(self.dim_c1, w_mul)
temp_kernel = _TEMPORAL_KERNEL_BASIS[cfg.MODEL.ARCH]
self.s1 = stem_helper.VideoModelStem(
dim_in=cfg.DATA.INPUT_CHANNEL_NUM,
dim_out=[dim_res1],
kernel=[temp_kernel[0][0] + [3, 3]],
stride=[[1, 2, 2]],
padding=[[temp_kernel[0][0][0] // 2, 1, 1]],
norm_module=self.norm_module,
stem_func_name="x3d_stem",
)
# blob_in = s1
dim_in = dim_res1
for stage, block in enumerate(self.block_basis):
dim_out = self._round_width(block[1], w_mul)
dim_inner = int(cfg.X3D.BOTTLENECK_FACTOR * dim_out)
n_rep = self._round_repeats(block[0], d_mul)
prefix = "s{}".format(
stage + 2
) # start w res2 to follow convention
s = resnet_helper.ResStage(
dim_in=[dim_in],
dim_out=[dim_out],
dim_inner=[dim_inner],
temp_kernel_sizes=temp_kernel[1],
stride=[block[2]],
num_blocks=[n_rep],
num_groups=[dim_inner]
if cfg.X3D.CHANNELWISE_3x3x3
else [num_groups],
num_block_temp_kernel=[n_rep],
nonlocal_inds=cfg.NONLOCAL.LOCATION[0],
nonlocal_group=cfg.NONLOCAL.GROUP[0],
nonlocal_pool=cfg.NONLOCAL.POOL[0],
instantiation=cfg.NONLOCAL.INSTANTIATION,
trans_func_name=cfg.RESNET.TRANS_FUNC,
stride_1x1=cfg.RESNET.STRIDE_1X1,
norm_module=self.norm_module,
dilation=cfg.RESNET.SPATIAL_DILATIONS[stage],
drop_connect_rate=cfg.MODEL.DROPCONNECT_RATE
* (stage + 2)
/ (len(self.block_basis) + 1),
)
dim_in = dim_out
self.add_module(prefix, s)
if self.enable_detection:
NotImplementedError
else:
spat_sz = int(math.ceil(cfg.DATA.TRAIN_CROP_SIZE / 32.0))
self.head = head_helper.X3DHead(
dim_in=dim_out,
dim_inner=dim_inner,
dim_out=cfg.X3D.DIM_C5,
num_classes=cfg.MODEL.NUM_CLASSES,
pool_size=[cfg.DATA.NUM_FRAMES, spat_sz, spat_sz],
dropout_rate=cfg.MODEL.DROPOUT_RATE,
act_func=cfg.MODEL.HEAD_ACT,
bn_lin5_on=cfg.X3D.BN_LIN5,
)
def forward(self, x, bboxes=None):
for module in self.children():
x = module(x)
return x
|