File size: 15,349 Bytes
3eb682b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Copyright 2020 Ross Wightman
# Modified Model definition
import torch
import torch.nn as nn
from functools import partial
import math
import warnings
import torch.nn.functional as F
import numpy as np
from timesformer.models.vit_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timesformer.models.helpers import load_pretrained
from timesformer.models.vit_utils import DropPath, to_2tuple, trunc_normal_
from .build import MODEL_REGISTRY
from torch import einsum
from einops import rearrange, reduce, repeat
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = {
'vit_base_patch16_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
),
}
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., with_qkv=True):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.with_qkv = with_qkv
if self.with_qkv:
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.attn_drop = nn.Dropout(attn_drop)
def forward(self, x):
B, N, C = x.shape
if self.with_qkv:
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
else:
qkv = x.reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
q, k, v = qkv, qkv, qkv
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
if self.with_qkv:
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0.1, act_layer=nn.GELU, norm_layer=nn.LayerNorm, attention_type='divided_space_time'):
super().__init__()
self.attention_type = attention_type
assert(attention_type in ['divided_space_time', 'space_only','joint_space_time'])
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
## Temporal Attention Parameters
if self.attention_type == 'divided_space_time':
self.temporal_norm1 = norm_layer(dim)
self.temporal_attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.temporal_fc = nn.Linear(dim, dim)
## drop path
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, B, T, W):
num_spatial_tokens = (x.size(1) - 1) // T
H = num_spatial_tokens // W
if self.attention_type in ['space_only', 'joint_space_time']:
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
elif self.attention_type == 'divided_space_time':
## Temporal
xt = x[:,1:,:]
xt = rearrange(xt, 'b (h w t) m -> (b h w) t m',b=B,h=H,w=W,t=T)
res_temporal = self.drop_path(self.temporal_attn(self.temporal_norm1(xt)))
res_temporal = rearrange(res_temporal, '(b h w) t m -> b (h w t) m',b=B,h=H,w=W,t=T)
res_temporal = self.temporal_fc(res_temporal)
xt = x[:,1:,:] + res_temporal
## Spatial
init_cls_token = x[:,0,:].unsqueeze(1)
cls_token = init_cls_token.repeat(1, T, 1)
cls_token = rearrange(cls_token, 'b t m -> (b t) m',b=B,t=T).unsqueeze(1)
xs = xt
xs = rearrange(xs, 'b (h w t) m -> (b t) (h w) m',b=B,h=H,w=W,t=T)
xs = torch.cat((cls_token, xs), 1)
res_spatial = self.drop_path(self.attn(self.norm1(xs)))
### Taking care of CLS token
cls_token = res_spatial[:,0,:]
cls_token = rearrange(cls_token, '(b t) m -> b t m',b=B,t=T)
cls_token = torch.mean(cls_token,1,True) ## averaging for every frame
res_spatial = res_spatial[:,1:,:]
res_spatial = rearrange(res_spatial, '(b t) (h w) m -> b (h w t) m',b=B,h=H,w=W,t=T)
res = res_spatial
x = xt
## Mlp
x = torch.cat((init_cls_token, x), 1) + torch.cat((cls_token, res), 1)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, T, H, W = x.shape
x = rearrange(x, 'b c t h w -> (b t) c h w')
x = self.proj(x)
W = x.size(-1)
x = x.flatten(2).transpose(1, 2)
return x, T, W
class VisionTransformer(nn.Module):
""" Vision Transformere
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0.1, hybrid_backbone=None, norm_layer=nn.LayerNorm, num_frames=8, attention_type='divided_space_time', dropout=0.):
super().__init__()
self.attention_type = attention_type
self.depth = depth
self.dropout = nn.Dropout(dropout)
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
## Positional Embeddings
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches+1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
if self.attention_type != 'space_only':
self.time_embed = nn.Parameter(torch.zeros(1, num_frames, embed_dim))
self.time_drop = nn.Dropout(p=drop_rate)
## Attention Blocks
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, self.depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, attention_type=self.attention_type)
for i in range(self.depth)])
self.norm = norm_layer(embed_dim)
# Classifier head
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
## initialization of temporal attention weights
if self.attention_type == 'divided_space_time':
i = 0
for m in self.blocks.modules():
m_str = str(m)
if 'Block' in m_str:
if i > 0:
nn.init.constant_(m.temporal_fc.weight, 0)
nn.init.constant_(m.temporal_fc.bias, 0)
i += 1
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token', 'time_embed'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
B = x.shape[0]
x, T, W = self.patch_embed(x)
cls_tokens = self.cls_token.expand(x.size(0), -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
## resizing the positional embeddings in case they don't match the input at inference
if x.size(1) != self.pos_embed.size(1):
pos_embed = self.pos_embed
cls_pos_embed = pos_embed[0,0,:].unsqueeze(0).unsqueeze(1)
other_pos_embed = pos_embed[0,1:,:].unsqueeze(0).transpose(1, 2)
P = int(other_pos_embed.size(2) ** 0.5)
H = x.size(1) // W
other_pos_embed = other_pos_embed.reshape(1, x.size(2), P, P)
new_pos_embed = F.interpolate(other_pos_embed, size=(H, W), mode='nearest')
new_pos_embed = new_pos_embed.flatten(2)
new_pos_embed = new_pos_embed.transpose(1, 2)
new_pos_embed = torch.cat((cls_pos_embed, new_pos_embed), 1)
x = x + new_pos_embed
else:
x = x + self.pos_embed
x = self.pos_drop(x)
## Time Embeddings
if self.attention_type != 'space_only':
cls_tokens = x[:B, 0, :].unsqueeze(1)
x = x[:,1:]
x = rearrange(x, '(b t) n m -> (b n) t m',b=B,t=T)
## Resizing time embeddings in case they don't match
if T != self.time_embed.size(1):
time_embed = self.time_embed.transpose(1, 2)
new_time_embed = F.interpolate(time_embed, size=(T), mode='nearest')
new_time_embed = new_time_embed.transpose(1, 2)
x = x + new_time_embed
else:
x = x + self.time_embed
x = self.time_drop(x)
x = rearrange(x, '(b n) t m -> b (n t) m',b=B,t=T)
x = torch.cat((cls_tokens, x), dim=1)
## Attention blocks
for blk in self.blocks:
x = blk(x, B, T, W)
### Predictions for space-only baseline
if self.attention_type == 'space_only':
x = rearrange(x, '(b t) n m -> b t n m',b=B,t=T)
x = torch.mean(x, 1) # averaging predictions for every frame
x = self.norm(x)
return x[:, 0]
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def _conv_filter(state_dict, patch_size=16):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
out_dict = {}
for k, v in state_dict.items():
if 'patch_embed.proj.weight' in k:
if v.shape[-1] != patch_size:
patch_size = v.shape[-1]
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
out_dict[k] = v
return out_dict
@MODEL_REGISTRY.register()
class vit_base_patch16_224(nn.Module):
def __init__(self, cfg, **kwargs):
super(vit_base_patch16_224, self).__init__()
self.pretrained=True
patch_size = 16
self.model = VisionTransformer(img_size=cfg.DATA.TRAIN_CROP_SIZE, num_classes=cfg.MODEL.NUM_CLASSES, patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, num_frames=cfg.DATA.NUM_FRAMES, attention_type=cfg.TIMESFORMER.ATTENTION_TYPE, **kwargs)
self.attention_type = cfg.TIMESFORMER.ATTENTION_TYPE
self.model.default_cfg = default_cfgs['vit_base_patch16_224']
self.num_patches = (cfg.DATA.TRAIN_CROP_SIZE // patch_size) * (cfg.DATA.TRAIN_CROP_SIZE // patch_size)
pretrained_model=cfg.TIMESFORMER.PRETRAINED_MODEL
if self.pretrained:
load_pretrained(self.model, num_classes=self.model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=_conv_filter, img_size=cfg.DATA.TRAIN_CROP_SIZE, num_patches=self.num_patches, attention_type=self.attention_type, pretrained_model=pretrained_model)
def forward(self, x):
x = self.model(x)
return x
@MODEL_REGISTRY.register()
class TimeSformer(nn.Module):
def __init__(self, img_size=224, patch_size=16, num_classes=400, num_frames=8, attention_type='divided_space_time', pretrained_model='', **kwargs):
super(TimeSformer, self).__init__()
self.pretrained=True
self.model = VisionTransformer(img_size=img_size, num_classes=num_classes, patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, num_frames=num_frames, attention_type=attention_type, **kwargs)
self.attention_type = attention_type
self.model.default_cfg = default_cfgs['vit_base_patch'+str(patch_size)+'_224']
self.num_patches = (img_size // patch_size) * (img_size // patch_size)
if self.pretrained:
load_pretrained(self.model, num_classes=self.model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=_conv_filter, img_size=img_size, num_frames=num_frames, num_patches=self.num_patches, attention_type=self.attention_type, pretrained_model=pretrained_model)
def forward(self, x):
x = self.model(x)
return x
|