File size: 15,349 Bytes
3eb682b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Copyright 2020 Ross Wightman
# Modified Model definition

import torch
import torch.nn as nn
from functools import partial
import math
import warnings
import torch.nn.functional as F
import numpy as np

from timesformer.models.vit_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timesformer.models.helpers import load_pretrained
from timesformer.models.vit_utils import DropPath, to_2tuple, trunc_normal_

from .build import MODEL_REGISTRY
from torch import einsum
from einops import rearrange, reduce, repeat

def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'patch_embed.proj', 'classifier': 'head',
        **kwargs
    }


default_cfgs = {
    'vit_base_patch16_224': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth',
        mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
    ),
}

class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., with_qkv=True):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5
        self.with_qkv = with_qkv
        if self.with_qkv:
           self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
           self.proj = nn.Linear(dim, dim)
           self.proj_drop = nn.Dropout(proj_drop)
        self.attn_drop = nn.Dropout(attn_drop)

    def forward(self, x):
        B, N, C = x.shape
        if self.with_qkv:
           qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
           q, k, v = qkv[0], qkv[1], qkv[2]
        else:
           qkv = x.reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
           q, k, v  = qkv, qkv, qkv

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        if self.with_qkv:
           x = self.proj(x)
           x = self.proj_drop(x)
        return x

class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0.1, act_layer=nn.GELU, norm_layer=nn.LayerNorm, attention_type='divided_space_time'):
        super().__init__()
        self.attention_type = attention_type
        assert(attention_type in ['divided_space_time', 'space_only','joint_space_time'])

        self.norm1 = norm_layer(dim)
        self.attn = Attention(
           dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)

        ## Temporal Attention Parameters
        if self.attention_type == 'divided_space_time':
            self.temporal_norm1 = norm_layer(dim)
            self.temporal_attn = Attention(
              dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
            self.temporal_fc = nn.Linear(dim, dim)

        ## drop path
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)


    def forward(self, x, B, T, W):
        num_spatial_tokens = (x.size(1) - 1) // T
        H = num_spatial_tokens // W

        if self.attention_type in ['space_only', 'joint_space_time']:
            x = x + self.drop_path(self.attn(self.norm1(x)))
            x = x + self.drop_path(self.mlp(self.norm2(x)))
            return x
        elif self.attention_type == 'divided_space_time':
            ## Temporal
            xt = x[:,1:,:]
            xt = rearrange(xt, 'b (h w t) m -> (b h w) t m',b=B,h=H,w=W,t=T)
            res_temporal = self.drop_path(self.temporal_attn(self.temporal_norm1(xt)))
            res_temporal = rearrange(res_temporal, '(b h w) t m -> b (h w t) m',b=B,h=H,w=W,t=T)
            res_temporal = self.temporal_fc(res_temporal)
            xt = x[:,1:,:] + res_temporal

            ## Spatial
            init_cls_token = x[:,0,:].unsqueeze(1)
            cls_token = init_cls_token.repeat(1, T, 1)
            cls_token = rearrange(cls_token, 'b t m -> (b t) m',b=B,t=T).unsqueeze(1)
            xs = xt
            xs = rearrange(xs, 'b (h w t) m -> (b t) (h w) m',b=B,h=H,w=W,t=T)
            xs = torch.cat((cls_token, xs), 1)
            res_spatial = self.drop_path(self.attn(self.norm1(xs)))

            ### Taking care of CLS token
            cls_token = res_spatial[:,0,:]
            cls_token = rearrange(cls_token, '(b t) m -> b t m',b=B,t=T)
            cls_token = torch.mean(cls_token,1,True) ## averaging for every frame
            res_spatial = res_spatial[:,1:,:]
            res_spatial = rearrange(res_spatial, '(b t) (h w) m -> b (h w t) m',b=B,h=H,w=W,t=T)
            res = res_spatial
            x = xt

            ## Mlp
            x = torch.cat((init_cls_token, x), 1) + torch.cat((cls_token, res), 1)
            x = x + self.drop_path(self.mlp(self.norm2(x)))
            return x

class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """
    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)

    def forward(self, x):
        B, C, T, H, W = x.shape
        x = rearrange(x, 'b c t h w -> (b t) c h w')
        x = self.proj(x)
        W = x.size(-1)
        x = x.flatten(2).transpose(1, 2)
        return x, T, W


class VisionTransformer(nn.Module):
    """ Vision Transformere
    """
    def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
                 num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
                 drop_path_rate=0.1, hybrid_backbone=None, norm_layer=nn.LayerNorm, num_frames=8, attention_type='divided_space_time', dropout=0.):
        super().__init__()
        self.attention_type = attention_type
        self.depth = depth
        self.dropout = nn.Dropout(dropout)
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
        num_patches = self.patch_embed.num_patches

        ## Positional Embeddings
        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches+1, embed_dim))
        self.pos_drop = nn.Dropout(p=drop_rate)
        if self.attention_type != 'space_only':
            self.time_embed = nn.Parameter(torch.zeros(1, num_frames, embed_dim))
            self.time_drop = nn.Dropout(p=drop_rate)

        ## Attention Blocks
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, self.depth)]  # stochastic depth decay rule
        self.blocks = nn.ModuleList([
            Block(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, attention_type=self.attention_type)
            for i in range(self.depth)])
        self.norm = norm_layer(embed_dim)

        # Classifier head
        self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()

        trunc_normal_(self.pos_embed, std=.02)
        trunc_normal_(self.cls_token, std=.02)
        self.apply(self._init_weights)

        ## initialization of temporal attention weights
        if self.attention_type == 'divided_space_time':
            i = 0
            for m in self.blocks.modules():
                m_str = str(m)
                if 'Block' in m_str:
                    if i > 0:
                      nn.init.constant_(m.temporal_fc.weight, 0)
                      nn.init.constant_(m.temporal_fc.bias, 0)
                    i += 1

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token', 'time_embed'}

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self, x):
        B = x.shape[0]
        x, T, W = self.patch_embed(x)
        cls_tokens = self.cls_token.expand(x.size(0), -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)

        ## resizing the positional embeddings in case they don't match the input at inference
        if x.size(1) != self.pos_embed.size(1):
            pos_embed = self.pos_embed
            cls_pos_embed = pos_embed[0,0,:].unsqueeze(0).unsqueeze(1)
            other_pos_embed = pos_embed[0,1:,:].unsqueeze(0).transpose(1, 2)
            P = int(other_pos_embed.size(2) ** 0.5)
            H = x.size(1) // W
            other_pos_embed = other_pos_embed.reshape(1, x.size(2), P, P)
            new_pos_embed = F.interpolate(other_pos_embed, size=(H, W), mode='nearest')
            new_pos_embed = new_pos_embed.flatten(2)
            new_pos_embed = new_pos_embed.transpose(1, 2)
            new_pos_embed = torch.cat((cls_pos_embed, new_pos_embed), 1)
            x = x + new_pos_embed
        else:
            x = x + self.pos_embed
        x = self.pos_drop(x)


        ## Time Embeddings
        if self.attention_type != 'space_only':
            cls_tokens = x[:B, 0, :].unsqueeze(1)
            x = x[:,1:]
            x = rearrange(x, '(b t) n m -> (b n) t m',b=B,t=T)
            ## Resizing time embeddings in case they don't match
            if T != self.time_embed.size(1):
                time_embed = self.time_embed.transpose(1, 2)
                new_time_embed = F.interpolate(time_embed, size=(T), mode='nearest')
                new_time_embed = new_time_embed.transpose(1, 2)
                x = x + new_time_embed
            else:
                x = x + self.time_embed
            x = self.time_drop(x)
            x = rearrange(x, '(b n) t m -> b (n t) m',b=B,t=T)
            x = torch.cat((cls_tokens, x), dim=1)

        ## Attention blocks
        for blk in self.blocks:
            x = blk(x, B, T, W)

        ### Predictions for space-only baseline
        if self.attention_type == 'space_only':
            x = rearrange(x, '(b t) n m -> b t n m',b=B,t=T)
            x = torch.mean(x, 1) # averaging predictions for every frame

        x = self.norm(x)
        return x[:, 0]

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x

def _conv_filter(state_dict, patch_size=16):
    """ convert patch embedding weight from manual patchify + linear proj to conv"""
    out_dict = {}
    for k, v in state_dict.items():
        if 'patch_embed.proj.weight' in k:
            if v.shape[-1] != patch_size:
                patch_size = v.shape[-1]
            v = v.reshape((v.shape[0], 3, patch_size, patch_size))
        out_dict[k] = v
    return out_dict

@MODEL_REGISTRY.register()
class vit_base_patch16_224(nn.Module):
    def __init__(self, cfg, **kwargs):
        super(vit_base_patch16_224, self).__init__()
        self.pretrained=True
        patch_size = 16
        self.model = VisionTransformer(img_size=cfg.DATA.TRAIN_CROP_SIZE, num_classes=cfg.MODEL.NUM_CLASSES, patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, num_frames=cfg.DATA.NUM_FRAMES, attention_type=cfg.TIMESFORMER.ATTENTION_TYPE, **kwargs)

        self.attention_type = cfg.TIMESFORMER.ATTENTION_TYPE
        self.model.default_cfg = default_cfgs['vit_base_patch16_224']
        self.num_patches = (cfg.DATA.TRAIN_CROP_SIZE // patch_size) * (cfg.DATA.TRAIN_CROP_SIZE // patch_size)
        pretrained_model=cfg.TIMESFORMER.PRETRAINED_MODEL
        if self.pretrained:
            load_pretrained(self.model, num_classes=self.model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=_conv_filter, img_size=cfg.DATA.TRAIN_CROP_SIZE, num_patches=self.num_patches, attention_type=self.attention_type, pretrained_model=pretrained_model)

    def forward(self, x):
        x = self.model(x)
        return x

@MODEL_REGISTRY.register()
class TimeSformer(nn.Module):
    def __init__(self, img_size=224, patch_size=16, num_classes=400, num_frames=8, attention_type='divided_space_time',  pretrained_model='', **kwargs):
        super(TimeSformer, self).__init__()
        self.pretrained=True
        self.model = VisionTransformer(img_size=img_size, num_classes=num_classes, patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, num_frames=num_frames, attention_type=attention_type, **kwargs)

        self.attention_type = attention_type
        self.model.default_cfg = default_cfgs['vit_base_patch'+str(patch_size)+'_224']
        self.num_patches = (img_size // patch_size) * (img_size // patch_size)
        if self.pretrained:
            load_pretrained(self.model, num_classes=self.model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=_conv_filter, img_size=img_size, num_frames=num_frames, num_patches=self.num_patches, attention_type=self.attention_type, pretrained_model=pretrained_model)
    def forward(self, x):
        x = self.model(x)
        return x