File size: 6,154 Bytes
3eb682b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import argparse
import os
from pathlib import Path
import shutil
import submitit
import multiprocessing
import sys

import torch
import timesformer.utils.checkpoint as cu
import timesformer.utils.multiprocessing as mpu
from timesformer.utils.misc import launch_job
from timesformer.utils.parser import load_config

from tools.run_net import get_func

def parse_args():
    parser = argparse.ArgumentParser(
        "Submitit for onestage training", add_help=False
    )
    parser.add_argument(
        "--num_gpus",
        help="Number of GPUs",
        default=8,
        type=int,
    )
    parser.add_argument(
        "--num_shards",
        help="Number of Nodes",
        default=1,
        type=int,
    )
    parser.add_argument(
        "--partition", default="learnfair", type=str, help="Partition where to submit"
    )
    parser.add_argument("--timeout", default=60 * 72, type=int, help="Duration of the job")
    parser.add_argument("--cfg", dest="cfg_file", help="Path to the config file",
                        default="configs/test_R50_8GPU.yaml", type=str)
    parser.add_argument(
        "--job_dir", default="", type=str, help="Job dir. Leave empty for automatic."
    )
    parser.add_argument(
        "--name", default="", type=str, help="Job dir. Leave empty for automatic."
    )
    parser.add_argument(
        "--resume-from",
        default="",
        type=str,
        help=(
            "Weights to resume from (.*pth file) or a file (last_checkpoint) that contains "
            + "weight file name from the same directory"
        ),
    )
    parser.add_argument("--resume-job", default="", type=str, help="resume training from the job")
    parser.add_argument("--use_volta32", action='store_true', help="Big models? Use this")
    parser.add_argument("--postfix", default="experiment", type=str, help="Postfix of the jobs")
    parser.add_argument("--mail", default="", type=str,
                        help="Email this user when the job finishes if specified")
    parser.add_argument('--comment', default="", type=str,
                        help='Comment to pass to scheduler, e.g. priority message')
    parser.add_argument(
        "opts",
        help="See lib/config/defaults.py for all options",
        default=None,
        nargs=argparse.REMAINDER,
    )
    return parser.parse_args()


def get_shared_folder() -> Path:
    user = os.getenv("USER")
    if Path("/checkpoint/").is_dir():
        p = Path(f"/checkpoint/{user}/experiments")
        p.mkdir(exist_ok=True)
        return p
    raise RuntimeError("No shared folder available")


def launch(shard_id, num_shards, cfg, init_method):
    os.environ["NCCL_MIN_NRINGS"] = "8"

    print ("Pytorch version: ", torch.__version__)

    cfg.SHARD_ID = shard_id
    cfg.NUM_SHARDS = num_shards

    print([
        shard_id, num_shards, cfg
    ])

    train, test = get_func(cfg)
    # Launch job.
    if cfg.TRAIN.ENABLE:
        launch_job(cfg=cfg, init_method=init_method, func=train)

    if cfg.TEST.ENABLE:
        launch_job(cfg=cfg, init_method=init_method, func=test)


class Trainer(object):
    def __init__(self, args):
        self.args = args

    def __call__(self):

        socket_name = os.popen("ip r | grep default | awk '{print $5}'").read().strip('\n')
        print("Setting GLOO and NCCL sockets IFNAME to: {}".format(socket_name))
        os.environ["GLOO_SOCKET_IFNAME"] = socket_name
        # not sure if the next line is really affect anything
        os.environ["NCCL_SOCKET_IFNAME"] = socket_name


        hostname_first_node = os.popen(
            "scontrol show hostnames $SLURM_JOB_NODELIST"
        ).read().split("\n")[0]
        dist_url = "tcp://{}:12399".format(hostname_first_node)
        print("We will use the following dist url: {}".format(dist_url))

        self._setup_gpu_args()
        results = launch(
            shard_id=self.args.machine_rank,
            num_shards=self.args.num_shards,
            cfg=load_config(self.args),
            init_method=dist_url,
        )
        return results

    def checkpoint(self):
        import submitit

        job_env = submitit.JobEnvironment()
        slurm_job_id = job_env.job_id
        if self.args.resume_job == "":
            self.args.resume_job = slurm_job_id
        print("Requeuing ", self.args)
        empty_trainer = type(self)(self.args)
        return submitit.helpers.DelayedSubmission(empty_trainer)

    def _setup_gpu_args(self):
        import submitit

        job_env = submitit.JobEnvironment()
        print(self.args)

        self.args.machine_rank = job_env.global_rank
        print(f"Process rank: {job_env.global_rank}")


def main():
    args = parse_args()

    if args.name == "":
        cfg_name = os.path.splitext(os.path.basename(args.cfg_file))[0]
        args.name = '_'.join([cfg_name, args.postfix])

    assert args.job_dir != ""

    args.output_dir = str(args.job_dir)
    args.job_dir = Path(args.job_dir) / "%j"

    # Note that the folder will depend on the job_id, to easily track experiments
    #executor = submitit.AutoExecutor(folder=Path(args.job_dir) / "%j", slurm_max_num_timeout=30)
    executor = submitit.AutoExecutor(folder=args.job_dir, slurm_max_num_timeout=30)

    # cluster setup is defined by environment variables
    num_gpus_per_node = args.num_gpus
    nodes = args.num_shards
    partition = args.partition
    timeout_min = args.timeout
    kwargs = {}
    if args.use_volta32:
        kwargs['slurm_constraint'] = 'volta32gb,ib4'
    if args.comment:
        kwargs['slurm_comment'] = args.comment

    executor.update_parameters(
        mem_gb=60 * num_gpus_per_node,
        gpus_per_node=num_gpus_per_node,
        tasks_per_node=1,
        cpus_per_task=10 * num_gpus_per_node,
        nodes=nodes,
        timeout_min=timeout_min,  # max is 60 * 72
        slurm_partition=partition,
        slurm_signal_delay_s=120,
        **kwargs
    )


    print(args.name)
    executor.update_parameters(name=args.name)

    trainer = Trainer(args)
    job = executor.submit(trainer)

    print("Submitted job_id:", job.job_id)


if __name__ == "__main__":
    main()