File size: 6,127 Bytes
3eb682b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
""" RMSProp modified to behave like Tensorflow impl

Originally cut & paste from PyTorch RMSProp
https://github.com/pytorch/pytorch/blob/063946d2b3f3f1e953a2a3b54e0b34f1393de295/torch/optim/rmsprop.py
Licensed under BSD-Clause 3 (ish), https://github.com/pytorch/pytorch/blob/master/LICENSE

Modifications Copyright 2020 Ross Wightman
"""

import torch
from torch.optim import Optimizer


class RMSpropTF(Optimizer):
    """Implements RMSprop algorithm (TensorFlow style epsilon)

    NOTE: This is a direct cut-and-paste of PyTorch RMSprop with eps applied before sqrt
    and a few other modifications to closer match Tensorflow for matching hyper-params.

    Noteworthy changes include:
    1. Epsilon applied inside square-root
    2. square_avg initialized to ones
    3. LR scaling of update accumulated in momentum buffer

    Proposed by G. Hinton in his
    `course <http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_.

    The centered version first appears in `Generating Sequences
    With Recurrent Neural Networks <https://arxiv.org/pdf/1308.0850v5.pdf>`_.

    Arguments:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, optional): learning rate (default: 1e-2)
        momentum (float, optional): momentum factor (default: 0)
        alpha (float, optional): smoothing (decay) constant (default: 0.9)
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-10)
        centered (bool, optional) : if ``True``, compute the centered RMSProp,
            the gradient is normalized by an estimation of its variance
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        decoupled_decay (bool, optional): decoupled weight decay as per https://arxiv.org/abs/1711.05101
        lr_in_momentum (bool, optional): learning rate scaling is included in the momentum buffer
            update as per defaults in Tensorflow

    """

    def __init__(self, params, lr=1e-2, alpha=0.9, eps=1e-10, weight_decay=0, momentum=0., centered=False,
                 decoupled_decay=False, lr_in_momentum=True):
        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 <= eps:
            raise ValueError("Invalid epsilon value: {}".format(eps))
        if not 0.0 <= momentum:
            raise ValueError("Invalid momentum value: {}".format(momentum))
        if not 0.0 <= weight_decay:
            raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
        if not 0.0 <= alpha:
            raise ValueError("Invalid alpha value: {}".format(alpha))

        defaults = dict(lr=lr, momentum=momentum, alpha=alpha, eps=eps, centered=centered, weight_decay=weight_decay,
                        decoupled_decay=decoupled_decay, lr_in_momentum=lr_in_momentum)
        super(RMSpropTF, self).__init__(params, defaults)

    def __setstate__(self, state):
        super(RMSpropTF, self).__setstate__(state)
        for group in self.param_groups:
            group.setdefault('momentum', 0)
            group.setdefault('centered', False)

    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError('RMSprop does not support sparse gradients')
                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    state['square_avg'] = torch.ones_like(p.data)  # PyTorch inits to zero
                    if group['momentum'] > 0:
                        state['momentum_buffer'] = torch.zeros_like(p.data)
                    if group['centered']:
                        state['grad_avg'] = torch.zeros_like(p.data)

                square_avg = state['square_avg']
                one_minus_alpha = 1. - group['alpha']

                state['step'] += 1

                if group['weight_decay'] != 0:
                    if 'decoupled_decay' in group and group['decoupled_decay']:
                        p.data.add_(-group['weight_decay'], p.data)
                    else:
                        grad = grad.add(group['weight_decay'], p.data)

                # Tensorflow order of ops for updating squared avg
                square_avg.add_(one_minus_alpha, grad.pow(2) - square_avg)
                # square_avg.mul_(alpha).addcmul_(1 - alpha, grad, grad)  # PyTorch original

                if group['centered']:
                    grad_avg = state['grad_avg']
                    grad_avg.add_(one_minus_alpha, grad - grad_avg)
                    # grad_avg.mul_(alpha).add_(1 - alpha, grad)  # PyTorch original
                    avg = square_avg.addcmul(-1, grad_avg, grad_avg).add(group['eps']).sqrt_()  # eps moved in sqrt
                else:
                    avg = square_avg.add(group['eps']).sqrt_()  # eps moved in sqrt

                if group['momentum'] > 0:
                    buf = state['momentum_buffer']
                    # Tensorflow accumulates the LR scaling in the momentum buffer
                    if 'lr_in_momentum' in group and group['lr_in_momentum']:
                        buf.mul_(group['momentum']).addcdiv_(group['lr'], grad, avg)
                        p.data.add_(-buf)
                    else:
                        # PyTorch scales the param update by LR
                        buf.mul_(group['momentum']).addcdiv_(grad, avg)
                        p.data.add_(-group['lr'], buf)
                else:
                    p.data.addcdiv_(-group['lr'], grad, avg)

        return loss