eP-ALM / accelerate_training /audio_caption.py
mshukor
init
3eb682b
raw
history blame
16.3 kB
import argparse
import os
import ruamel_yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import os, sys
sys.path.append(os.path.abspath('.')) # ~/ep-alm
from models.epalm import ePALM
from models.utils import freeze_whole_model, unfreeze_parameters, print_trainable_params_percentage
from models.utils import filter_state, filter_msg, exclude_list
from transformers import AutoTokenizer
import utils
from dataset.audio_caption import get_loader
from scheduler import create_scheduler
from optim import create_optimizer
from accelerate import Accelerator
def train(model, data_loader, optimizer, tokenizer, epoch, warmup_steps, device, scheduler, config, accelerator=None):
# train
model.train()
metric_logger = utils.MetricLogger(delimiter=" ", accelerator=accelerator)
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('loss', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
header = 'Train Epoch: [{}]'.format(epoch)
print_freq = 50
step_size = 100
warmup_iterations = warmup_steps*step_size
lm_loss_weight = config.get('lm_loss_weight', 1)
append_eos_token = config.get('append_eos_token', False)
eos_token = tokenizer.eos_token
config_optim = utils.AttrDict(config['optimizer'])
prompt_lr = config_optim.prompt_lr if hasattr(config_optim, 'prompt_lr') else None
if prompt_lr is not None:
metric_logger.add_meter('prompt_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
for i, batch in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
image = batch["images"].to(device,non_blocking=True)
text = batch["sent"]
if append_eos_token:
text = [t.replace(eos_token, '') + eos_token for t in text]
text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device)
targets = text_input.input_ids.masked_fill(text_input.input_ids == tokenizer.pad_token_id, -100)
answer_output = model(image=image,
text=text_input,
labels = targets,
return_dict = True,
mode='train',
reduction='none',
)
loss = answer_output.loss
loss = loss.sum()/image.size(0)
loss = loss*lm_loss_weight
optimizer.zero_grad()
accelerator.backward(loss)
optimizer.step()
metric_logger.update(loss=loss.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
if prompt_lr is not None:
metric_logger.update(prompt_lr=optimizer.param_groups[1]["lr"])
if epoch==0 and i%step_size==0 and i<=warmup_iterations:
scheduler.step(i//step_size)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
accelerator.print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluation(model, data_loader, tokenizer, device, config, accelerator=None):
# test
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Generate Caption test result:'
print_freq = 50
predictions = []
targets = []
pad_token = tokenizer.pad_token
eos_token = tokenizer.eos_token
num_beams = config.get('num_beams', 1)
do_sample = config.get('do_sample', True)
accelerator.print("num_beams", num_beams, "do_sample", do_sample)
for n, batch in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
image = batch["images"].to(device,non_blocking=True)
text = ['' for q in image]
text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device)
out = model(image=image, text=text_input, mode='generate', return_dict=True, max_length=30,
do_sample=do_sample, num_beams=num_beams)
out_decode = []
for i, o in enumerate(out):
try:
res = tokenizer.decode(o)
response = res.split('</s>')[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
except TypeError:
accelerator.print(o)
response = ' '
out_decode.append(response)
predictions.extend(out_decode)
if 'targets' in batch:
targets.extend(batch['targets'])
evaluator = data_loader.evaluator
eval_results = evaluator.evaluate(predictions, targets)
wandb_log_dict = {}
for score_name, score in eval_results.items():
wandb_log_dict[f'Valid/{score_name}'] = score
accelerator.print(wandb_log_dict)
return wandb_log_dict
def main(args, config):
if 'XDG_CACHE_HOME' in os.environ:
os.environ['TORCH_HOME'] = os.environ['XDG_CACHE_HOME']+'/torch'
else:
os.environ['TORCH_HOME'] = '~/.cache/torch'
args.distributed = False
accelerator = Accelerator()
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
start_epoch = 0
max_epoch = config['schedular']['epochs']
warmup_steps = config['schedular']['warmup_epochs']
accelerator.print(args, config)
tokenizer = AutoTokenizer.from_pretrained(args.text_model, use_fast=False, local_files_only=True)
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
else:
num_tasks = None
global_rank = None
#########
num_workers = config.get('num_workers', 4)
train_topk = config.get('train_topk', -1)
valid_topk = config.get('valid_topk', -1)
data_dir = args.data_dir
args.image_size = config.get('image_res', 224)
args.use_data_augmentation = True
black_image = config.get('black_image', False)
accelerator.print("black image:", black_image)
# audio
args.melbins = config.get('melbins', 128)
args.target_length = config.get('target_length', 1024)
args.num_tries = config.get('num_tries', 1)
args.skip_norm = config.get('skip_norm', True)
args.norm_mean = config.get('norm_mean', None)
args.norm_std = config.get('norm_std', None)
args.noise = config.get('noise', False)
args.freqm_p = config.get('freqm_p', 48)
args.timem_p = config.get('timem_p', 192)
train_split = config.get('train_split', 'train')
val_split = config.get('val_split', 'val')
test_split = config.get('test_split', 'test')
train_loader = get_loader(
args,
split=train_split, mode='train', batch_size=config['batch_size_train'],
distributed=args.distributed,
workers=num_workers,
topk=train_topk,
data_dir=data_dir,
local_rank=global_rank, world_size=num_tasks, verbose=True, black_image=black_image
)
accelerator.print('# len train loader:', len(train_loader))
accelerator.print(f'Building val loader')
val_loader = get_loader(
args,
split=val_split, mode='val', batch_size=config['batch_size_test'],
distributed=False,
workers=4,
topk=valid_topk,data_dir=data_dir,
local_rank=global_rank, world_size=num_tasks, verbose=True, black_image=black_image
)
accelerator.print('# len val loader:', len(val_loader))
accelerator.print(f'Building test loader')
test_loader = get_loader(
args,
split=test_split, mode='val', batch_size=config['batch_size_test'],
distributed=False,
workers=4,
topk=valid_topk,data_dir=data_dir,
local_rank=global_rank, world_size=num_tasks, verbose=True
)
accelerator.print('# len test loader:', len(test_loader))
#### Model ####
accelerator.print("Creating model")
start_layer_idx = config.get('start_layer_idx', 0)
end_layer_idx = config.get('end_layer_idx', 0)
vision_model_name = config.get('vision_model_name', args.vision_model)
model = ePALM(opt_model_name = args.text_model,
vision_model_name = vision_model_name,
use_vis_prefix = True,
start_layer_idx = start_layer_idx,
end_layer_idx = end_layer_idx,
return_hidden_state_vision = True,
config=config,
low_cpu=args.low_cpu
)
model = model.to(device)
arg_opt = utils.AttrDict(config['optimizer'])
optimizer = create_optimizer(arg_opt, model, config=config)
if hasattr(arg_opt, 'prompt_lr') and arg_opt.prompt_lr is not None:
accelerator.print('\tInitial other params params lr: %f' % optimizer.param_groups[0]['lr'])
accelerator.print('\tInitial prompt params lr: %f' % optimizer.param_groups[1]['lr'])
arg_sche = utils.AttrDict(config['schedular'])
lr_scheduler, _ = create_scheduler(arg_sche, optimizer)
best_epoch = 0
best_valid = 0
if args.checkpoint:
checkpoint = torch.load(args.checkpoint, map_location='cpu')
state_dict = checkpoint['model']
msg = model.load_state_dict(state_dict,strict=False)
msg = filter_msg(msg, exclude_list)
accelerator.print('load checkpoint from %s'%args.checkpoint)
accelerator.print(msg)
if args.resume:
model = model.to(device)
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
start_epoch = checkpoint['epoch']+1
accelerator.print(checkpoint.keys())
for p in optimizer.param_groups: # not necessay after torch 1.12.1
p['capturable'] = True
if 'best_valid' in checkpoint:
best_valid = checkpoint['best_valid']
best_epoch = checkpoint['best_epoch']
accelerator.print("load best valid {} at epoch {}".format(best_valid, best_epoch))
freeze_whole_model(model)
unfreeze_parameters(model, config)
print_trainable_params_percentage(model)
val_evaluator = val_loader.evaluator
test_evaluator = test_loader.evaluator
task = val_loader.task
device = accelerator.device
model, optimizer, train_loader, val_loader, test_loader, lr_scheduler = accelerator.prepare(
model, optimizer, train_loader, val_loader, test_loader, lr_scheduler
)
model = model.to(device)
test_loader.evaluator = test_evaluator
val_loader.evaluator = val_evaluator
test_loader.task = task
val_loader.task = task
accelerator.print("Start training")
start_time = time.time()
for epoch in range(start_epoch, max_epoch):
if epoch>0:
lr_scheduler.step(epoch+warmup_steps)
if not args.evaluate:
if args.distributed:
train_loader.sampler.set_epoch(epoch)
train_stats = train(model, train_loader, optimizer, tokenizer, epoch, warmup_steps, device,
lr_scheduler, config, accelerator=accelerator)
if args.evaluate:
break
valid_results = evaluation(model, val_loader, tokenizer, device, config, accelerator=accelerator)
if utils.is_main_process():
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
}
with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
f.write(json.dumps(log_stats) + "\n")
## avoid memory issue with accelerator.get_state_dict
state_dict = accelerator.unwrap_model(model)
state_dict = state_dict.state_dict()
state_dict = filter_state(state_dict, exclude_list) # filter_state(model_without_ddp.state_dict(), exclude_list)
if state_dict is not None:
for k in state_dict:
if state_dict[k].dtype == torch.float16:
state_dict[k] = state_dict[k].float()
save_obj = {
'model': state_dict,
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'config': config,
'epoch': epoch,
'best_valid': best_valid,
'best_epoch': best_epoch,
}
if args.save_best:
valid_score = valid_results['Valid/CIDEr']
if valid_score > best_valid or epoch == 0:
best_valid = valid_score
best_epoch = epoch
accelerator.print("Save best epoch:", best_epoch)
save_obj['best_valid'] = best_valid
save_obj['best_epoch'] = best_epoch
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth'))
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_last.pth'))
dist.barrier()
### test best model
if not args.evaluate:
checkpoint = torch.load(os.path.join(args.output_dir, 'checkpoint_best.pth'), map_location='cpu')
state_dict = checkpoint['model']
msg = model.module.load_state_dict(state_dict,strict=False)
msg = filter_msg(msg, exclude_list)
accelerator.print('load checkpoint for test from %s'%os.path.join(args.output_dir, 'checkpoint_best.pth'))
accelerator.print(msg)
print("best_epoch", checkpoint['best_epoch'], "best_valid", checkpoint['best_valid'])
print("best_epoch", best_epoch, "best_valid", best_valid)
vqa_result = evaluation(model, test_loader, tokenizer, device, config, accelerator=accelerator)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
accelerator.print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/VQA.yaml')
parser.add_argument('--checkpoint', default='')
parser.add_argument('--output_dir', default='output/vqa')
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--text_model', default='facebook/opt-350m')
parser.add_argument('--vision_model', default='vit_base_patch16_224')
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', default=True, type=bool)
parser.add_argument('--data_dir', default='/data/mshukor/data')
parser.add_argument('--resume', action='store_true')
parser.add_argument('--save_best', action='store_true')
parser.add_argument('--image_dir', default='/data/mshukor/data')
parser.add_argument('--low_cpu', action='store_true')
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
args.result_dir = os.path.join(args.output_dir, 'result')
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
Path(args.result_dir).mkdir(parents=True, exist_ok=True)
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
main(args, config)