eP-ALM / TimeSformer /timesformer /models /batchnorm_helper.py
mshukor
init
3eb682b
raw
history blame
7.4 kB
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
"""BatchNorm (BN) utility functions and custom batch-size BN implementations"""
from functools import partial
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.autograd.function import Function
import timesformer.utils.distributed as du
def get_norm(cfg):
"""
Args:
cfg (CfgNode): model building configs, details are in the comments of
the config file.
Returns:
nn.Module: the normalization layer.
"""
if cfg.BN.NORM_TYPE == "batchnorm":
return nn.BatchNorm3d
elif cfg.BN.NORM_TYPE == "sub_batchnorm":
return partial(SubBatchNorm3d, num_splits=cfg.BN.NUM_SPLITS)
elif cfg.BN.NORM_TYPE == "sync_batchnorm":
return partial(
NaiveSyncBatchNorm3d, num_sync_devices=cfg.BN.NUM_SYNC_DEVICES
)
else:
raise NotImplementedError(
"Norm type {} is not supported".format(cfg.BN.NORM_TYPE)
)
class SubBatchNorm3d(nn.Module):
"""
The standard BN layer computes stats across all examples in a GPU. In some
cases it is desirable to compute stats across only a subset of examples
(e.g., in multigrid training https://arxiv.org/abs/1912.00998).
SubBatchNorm3d splits the batch dimension into N splits, and run BN on
each of them separately (so that the stats are computed on each subset of
examples (1/N of batch) independently. During evaluation, it aggregates
the stats from all splits into one BN.
"""
def __init__(self, num_splits, **args):
"""
Args:
num_splits (int): number of splits.
args (list): other arguments.
"""
super(SubBatchNorm3d, self).__init__()
self.num_splits = num_splits
num_features = args["num_features"]
# Keep only one set of weight and bias.
if args.get("affine", True):
self.affine = True
args["affine"] = False
self.weight = torch.nn.Parameter(torch.ones(num_features))
self.bias = torch.nn.Parameter(torch.zeros(num_features))
else:
self.affine = False
self.bn = nn.BatchNorm3d(**args)
args["num_features"] = num_features * num_splits
self.split_bn = nn.BatchNorm3d(**args)
def _get_aggregated_mean_std(self, means, stds, n):
"""
Calculate the aggregated mean and stds.
Args:
means (tensor): mean values.
stds (tensor): standard deviations.
n (int): number of sets of means and stds.
"""
mean = means.view(n, -1).sum(0) / n
std = (
stds.view(n, -1).sum(0) / n
+ ((means.view(n, -1) - mean) ** 2).view(n, -1).sum(0) / n
)
return mean.detach(), std.detach()
def aggregate_stats(self):
"""
Synchronize running_mean, and running_var. Call this before eval.
"""
if self.split_bn.track_running_stats:
(
self.bn.running_mean.data,
self.bn.running_var.data,
) = self._get_aggregated_mean_std(
self.split_bn.running_mean,
self.split_bn.running_var,
self.num_splits,
)
def forward(self, x):
if self.training:
n, c, t, h, w = x.shape
x = x.view(n // self.num_splits, c * self.num_splits, t, h, w)
x = self.split_bn(x)
x = x.view(n, c, t, h, w)
else:
x = self.bn(x)
if self.affine:
x = x * self.weight.view((-1, 1, 1, 1))
x = x + self.bias.view((-1, 1, 1, 1))
return x
class GroupGather(Function):
"""
GroupGather performs all gather on each of the local process/ GPU groups.
"""
@staticmethod
def forward(ctx, input, num_sync_devices, num_groups):
"""
Perform forwarding, gathering the stats across different process/ GPU
group.
"""
ctx.num_sync_devices = num_sync_devices
ctx.num_groups = num_groups
input_list = [
torch.zeros_like(input) for k in range(du.get_local_size())
]
dist.all_gather(
input_list, input, async_op=False, group=du._LOCAL_PROCESS_GROUP
)
inputs = torch.stack(input_list, dim=0)
if num_groups > 1:
rank = du.get_local_rank()
group_idx = rank // num_sync_devices
inputs = inputs[
group_idx
* num_sync_devices : (group_idx + 1)
* num_sync_devices
]
inputs = torch.sum(inputs, dim=0)
return inputs
@staticmethod
def backward(ctx, grad_output):
"""
Perform backwarding, gathering the gradients across different process/ GPU
group.
"""
grad_output_list = [
torch.zeros_like(grad_output) for k in range(du.get_local_size())
]
dist.all_gather(
grad_output_list,
grad_output,
async_op=False,
group=du._LOCAL_PROCESS_GROUP,
)
grads = torch.stack(grad_output_list, dim=0)
if ctx.num_groups > 1:
rank = du.get_local_rank()
group_idx = rank // ctx.num_sync_devices
grads = grads[
group_idx
* ctx.num_sync_devices : (group_idx + 1)
* ctx.num_sync_devices
]
grads = torch.sum(grads, dim=0)
return grads, None, None
class NaiveSyncBatchNorm3d(nn.BatchNorm3d):
def __init__(self, num_sync_devices, **args):
"""
Naive version of Synchronized 3D BatchNorm.
Args:
num_sync_devices (int): number of device to sync.
args (list): other arguments.
"""
self.num_sync_devices = num_sync_devices
if self.num_sync_devices > 0:
assert du.get_local_size() % self.num_sync_devices == 0, (
du.get_local_size(),
self.num_sync_devices,
)
self.num_groups = du.get_local_size() // self.num_sync_devices
else:
self.num_sync_devices = du.get_local_size()
self.num_groups = 1
super(NaiveSyncBatchNorm3d, self).__init__(**args)
def forward(self, input):
if du.get_local_size() == 1 or not self.training:
return super().forward(input)
assert input.shape[0] > 0, "SyncBatchNorm does not support empty inputs"
C = input.shape[1]
mean = torch.mean(input, dim=[0, 2, 3, 4])
meansqr = torch.mean(input * input, dim=[0, 2, 3, 4])
vec = torch.cat([mean, meansqr], dim=0)
vec = GroupGather.apply(vec, self.num_sync_devices, self.num_groups) * (
1.0 / self.num_sync_devices
)
mean, meansqr = torch.split(vec, C)
var = meansqr - mean * mean
self.running_mean += self.momentum * (mean.detach() - self.running_mean)
self.running_var += self.momentum * (var.detach() - self.running_var)
invstd = torch.rsqrt(var + self.eps)
scale = self.weight * invstd
bias = self.bias - mean * scale
scale = scale.reshape(1, -1, 1, 1, 1)
bias = bias.reshape(1, -1, 1, 1, 1)
return input * scale + bias