|
import re |
|
|
|
import torch |
|
from torch import nn |
|
|
|
|
|
|
|
|
|
|
|
def freeze_whole_model(model): |
|
for n, p in model.named_parameters(): |
|
p.requires_grad = False |
|
|
|
def unfreeze_parameters(model, config): |
|
|
|
|
|
targets = ['connector'] |
|
if config.get('unfreeze_text_layer_norm', False): |
|
targets = targets + ['self_attn_layer_norm', 'final_layer_norm'] |
|
|
|
if config.get('unfreeze_vision_layer_norm', False): |
|
targets = targets + ['norm', 'norm1', 'norm2'] |
|
|
|
print('unfreeze targets:', targets) |
|
for n, p in model.named_parameters(): |
|
if any(t in n for t in targets): |
|
|
|
p.requires_grad = True |
|
print(f"{n} is trainable...") |
|
|
|
|
|
def print_trainable_params_percentage(model): |
|
|
|
|
|
orig_param_size = sum(p.numel() for p in model.parameters()) |
|
|
|
def count_parameters(model): |
|
return sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
|
|
trainable_size = count_parameters(model) |
|
|
|
percentage = trainable_size / orig_param_size * 100 |
|
|
|
print(f"Trainable param percentage: {percentage:.2f}% ({trainable_size}/{orig_param_size})") |
|
|
|
return percentage |