eP-ALM / dataset /vqa.py
mshukor
init
3eb682b
raw
history blame
26.2 kB
from torch.utils.data import Dataset
import numpy as np
import random
import re
import torch
from torchvision import transforms
from PIL import Image
import json
from dataset.randaugment import RandomAugment
def pre_question(question,max_ques_words):
question = re.sub(
r"([,.'!?\"()*#:;~])",
'',
question.lower(),
).replace('-', ' ').replace('/', ' ')
question = question.rstrip(' ')
#truncate question
question_words = question.split(' ')
if len(question_words)>max_ques_words:
question = ' '.join(question_words[:max_ques_words])
return question
###############################################
# https://raw.githubusercontent.com/ylsung/VL_adapter/545fcbbdbbaec4c442de35567f6ae477ff4e8265/VL-T5/src/vqa_raw_data.py
from torch.utils.data import DataLoader, Dataset
from pathlib import Path
import json
import random
from tqdm import tqdm
import torch
import numpy as np
import re
from PIL import Image
from torch.utils.data.distributed import DistributedSampler
# {'what': 0.0, 'what color are the': 0.0, 'are there': 0.0, 'where is the': 0.0, 'how many': 0.0, 'what type of': 0.0, 'is the': 0.0, 'do': 0.0, 'are the': 0.0, 'none of the above': 0.0, 'are these': 0.0, 'is this a': 0.0, 'is the woman': 0.0, 'what color is the': 0.0, 'was': 0.0, 'what brand': 0.0, 'what is the': 0.0, 'what room is': 0.0, 'does this': 0.0, 'who is': 0.0, 'what are the': 0.0, 'where are the': 0.0, 'can you': 0.0, 'are': 0.0, 'what is the person': 0.0, 'has': 0.0, 'are they': 0.0, 'what is on the': 0.0, 'what is the man': 0.0, 'what kind of': 0.0, 'is the man': 0.0, 'is': 0.0, 'what is': 0.0, 'is that a': 0.0, 'what are': 0.0, 'is this': 0.0, 'what is in the': 0.0, 'how': 0.0, 'is there': 0.0, 'which': 0.0, 'is it': 0.0, 'how many people are': 0.0, 'what color is': 0.0, 'are there any': 0.0, 'what time': 0.0, 'what is the woman': 0.0, 'is there a': 0.0, 'is this person': 0.0, 'does the': 0.0, 'why': 0.0, 'what is the color of the': 0.0, 'what does the': 0.0, 'is this an': 0.0, 'is he': 0.0, 'what animal is': 0.0, 'how many people are in': 0.0, 'what color': 0.0, 'what is the name': 0.0, 'why is the': 0.0, 'do you': 0.0, 'could': 0.0, 'what sport is': 0.0, 'what is this': 0.0, 'is the person': 0.0, 'what number is': 0.0}
class VQAFineTuneDataset(Dataset):
def __init__(self, split='train', raw_dataset=None, rank=-1, topk=-1, verbose=True, args=None, mode='train',
data_dir=None, black_image=False, balanced_data=False, seed=42):
super().__init__()
dataset_dir = Path(data_dir)
coco_dir = dataset_dir.joinpath('COCO')
vg_dir = dataset_dir.joinpath('VG')
coco_img_dir = coco_dir.joinpath('images/')
coco_feature_dir = coco_dir.joinpath('features')
vqa_dir = dataset_dir.joinpath('vqa')
self.seed = seed
self.raw_dataset = raw_dataset
self.topk = topk
self.verbose = verbose
self.args = args
self.mode = mode
self.black_image = black_image
self.balanced_data = balanced_data
normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
self.train_transform = transforms.Compose([
transforms.RandomResizedCrop(args.image_size,scale=(0.5, 1.0), interpolation=Image.BICUBIC),
transforms.RandomHorizontalFlip(),
RandomAugment(2,7,isPIL=True,augs=['Identity','AutoContrast','Equalize','Brightness','Sharpness',
'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate']),
transforms.ToTensor(),
normalize,
])
self.test_transform = transforms.Compose([
transforms.Resize((args.image_size,args.image_size),interpolation=Image.BICUBIC),
transforms.ToTensor(),
normalize,
])
# Loading datasets to data
self.sources = split.split(',')
if self.verbose:
print('Data sources: ', self.sources)
self.answer_normalizer = VQAEvaluator()
self.img_ids_to_source = {}
data_info_dicts = []
for source in self.sources:
data_info_path = dataset_dir.joinpath(f'vqa/{source}.json')
with open(data_info_path) as f:
_data_info_dicts = json.load(f)
for _d in _data_info_dicts:
if 'vg_qa_full' == source:
self.img_ids_to_source[_d['img_id']] = 'vg'
elif 'train2014' in _d['img_id']:
self.img_ids_to_source[_d['img_id']] = 'train2014'
elif 'val2014' in _d['img_id']:
self.img_ids_to_source[_d['img_id']] = 'val2014'
elif 'test2014' in _d['img_id']:
self.img_ids_to_source[_d['img_id']] = 'test2014'
else:
self.img_ids_to_source[_d['img_id']] = source
_d['source'] = source
data_info_dicts.extend(_data_info_dicts)
if self.verbose:
print(f"Loaded {len(_data_info_dicts)} data from", source)
data = data_info_dicts
if isinstance(self.topk, float) and (0 < self.topk <= 1):
used_samples = int(self.topk * len(data))
random.seed(self.seed)
data = random.sample(data, used_samples)
if self.verbose:
print(f"Use only {len(data)} data")
elif self.topk > 0:
random.seed(self.seed)
random.shuffle(data)
if self.balanced_data and mode == 'train':
print("create balanced data")
qtype_2_data = {}
for d in data:
qtype = d['question_type']
if qtype not in qtype_2_data:
qtype_2_data[qtype] = [d]
else:
qtype_2_data[qtype].append(d)
qtype_len = self.topk//(len(qtype_2_data.keys()))
print(qtype_len, "sample per question type")
new_data = []
for k, v in qtype_2_data.items():
new_data+=v[:qtype_len]
data = new_data
data = data[:int(self.topk)]
if self.verbose:
print(f"Use only {len(data)} data", data[:2])
self.data = data
if self.verbose:
print("# all sentences:", len(self.data))
self.image_size = self.args.image_size #eval(self.args.image_size)
if mode == "train" and self.args.use_data_augmentation:
self.transform = self.train_transform
else:
self.transform = self.test_transform
self.source_to_h5 = {
'train2014': coco_img_dir.joinpath(f'train2014'),
'val2014': coco_img_dir.joinpath(f'val2014'),
'test2014': coco_img_dir.joinpath(f'test2014'),
}
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
out_dict = {}
out_dict['args'] = self.args
datum = self.data[idx]
###### Image ######
img_id = datum['img_id']
out_dict['img_id'] = img_id
source = self.img_ids_to_source[img_id]
path = self.source_to_h5[source].joinpath(f"{img_id}.jpg")
image = Image.open(path).convert('RGB')
out_dict["image"] = self.transform(image)
if self.black_image:
out_dict["image"] = torch.zeros_like(out_dict["image"])
###### Text #####
if 'sent' in datum:
sent = datum['sent']
elif 'question' in datum:
sent = datum['question']
question_id = datum['question_id']
out_dict['question_id'] = question_id
out_dict['sent'] = sent
if 'is_topk_optimal' in datum:
out_dict['is_topk_optimal'] = datum['is_topk_optimal']
if 'label' in datum:
label = datum['label']
out_dict['label'] = label
if self.args.raw_label:
# 10 raw answers
# ex) 'answers': [{'answer': 'net', 'answer_confidence': 'maybe', 'answer_id': 1},
# {'answer': 'net', 'answer_confidence': 'yes', 'answer_id': 2},
# {'answer': 'net', 'answer_confidence': 'yes', 'answer_id': 3},
# {'answer': 'netting', 'answer_confidence': 'yes', 'answer_id': 4},
# {'answer': 'net', 'answer_confidence': 'yes', 'answer_id': 5},
# {'answer': 'net', 'answer_confidence': 'yes', 'answer_id': 6},
# {'answer': 'mesh', 'answer_confidence': 'maybe', 'answer_id': 7},
# {'answer': 'net', 'answer_confidence': 'yes', 'answer_id': 8},
# {'answer': 'net', 'answer_confidence': 'yes', 'answer_id': 9},
# {'answer': 'net', 'answer_confidence': 'yes', 'answer_id': 10}],
answers = datum['answers']
answer = random.choice(answers)['answer']
if self.args.answer_normalize:
answer = self.answer_normalizer.normalize_answer(answer)
score = int(len(answers) > 0)
out_dict['answer'] = answer
out_dict['score'] = score
out_dict['all_answers'] = [a['answer'] for a in answers]
else:
# https://github.com/airsplay/lxmert/blob/master/src/pretrain/lxmert_pretrain.py#L191
answers = []
scores = []
for a, s in label.items():
answers.append(a)
scores.append(s)
score_sum = sum(scores)
if score_sum == 0:
answer = ''
score = 0.
else:
prob = [score / score_sum for score in scores]
choice = np.random.multinomial(1, prob).argmax()
answer = answers[choice]
score = scores[choice]
assert len(answer) > 0, (sent, label, choice, answer)
out_dict['answer'] = answer
out_dict['score'] = score
out_dict['all_answers'] = answers
return out_dict
def collate_fn(self, batch):
batch_entry = {}
args = batch[0]['args']
B = len(batch)
sentences = []
question_ids = []
answers = []
all_answers = []
img_ids = []
img_paths = []
labels = []
scores = []
is_topk_optimal = []
images = []
for i, entry in enumerate(batch):
images.append(entry["image"])
sentences.append(entry['sent'])
question_ids.append(entry['question_id'])
if 'answer' in entry:
answers.append(entry['answer'])
if 'all_answers' in entry:
all_answers.append(entry['all_answers'])
if 'score' in entry:
scores.append(entry['score'])
if 'label' in entry:
labels.append(entry['label'])
if 'is_topk_optimal' in entry:
is_topk_optimal.append(entry['is_topk_optimal'])
batch_entry['sent'] = sentences
batch_entry['question_ids'] = question_ids
batch_entry['answers'] = answers
batch_entry['all_answers'] = all_answers
batch_entry['scores'] = torch.FloatTensor(scores)
batch_entry['labels'] = labels
batch_entry['args'] = args
batch_entry['task'] = 'vqa'
batch_entry['images'] = torch.stack(images)
return batch_entry
def get_loader(args, split='karpathy_train', mode='train',
batch_size=32, workers=4, distributed=False, gpu=0, topk=-1,
verbose=False, data_dir='/data/mshukor/data', local_rank=None,
world_size=None, black_image=False, balanced_data=False, seed=42):
_dset = VQADataset(split, verbose, data_dir=data_dir)
dataset = VQAFineTuneDataset(
split,
raw_dataset=_dset,
rank=gpu,
topk=topk,
verbose=verbose,
args=args,
mode=mode, data_dir=data_dir, black_image=black_image,
balanced_data=balanced_data, seed=seed)
if distributed:
sampler = DistributedSampler(dataset, num_replicas=world_size, rank=local_rank)
else:
sampler = None
if mode == 'train':
loader = DataLoader(
dataset, batch_size=batch_size, shuffle=(sampler is None),
num_workers=workers, pin_memory=True, sampler=sampler,
collate_fn=dataset.collate_fn)
else:
loader = DataLoader(
dataset,
batch_size=batch_size,
num_workers=workers, pin_memory=True,
sampler=sampler,
shuffle=None if (sampler is not None) else False,
collate_fn=dataset.collate_fn,
drop_last=False)
if verbose:
loader.evaluator = VQAEvaluator(_dset)
loader.task = 'vqa'
return loader
class VQADataset:
"""
A VQA data example in json file:
{
"answer_type": "other",
"img_id": "COCO_train2014_000000458752",
"label": {
"net": 1
},
"question_id": 458752000,
"question_type": "what is this",
"sent": "What is this photo taken looking through?"
}
"""
def __init__(self, splits: str, verbose=True, data_dir='/data/mshukor/data'):
self.name = splits
self.splits = splits.split(',')
dataset_dir = Path(data_dir)
vqa_dir = dataset_dir.joinpath('vqa')
with open(dataset_dir.joinpath(f'vqa/v2_mscoco_train2014_annotations.json')) as f:
train2014_data = json.load(f)
with open(dataset_dir.joinpath(f'vqa/v2_mscoco_val2014_annotations.json')) as f:
val2014_data = json.load(f)
train2014_id2datum = {}
for datum in train2014_data['annotations']:
qid = datum['question_id']
train2014_id2datum[qid] = datum
val2014_id2datum = {}
for datum in val2014_data['annotations']:
qid = datum['question_id']
val2014_id2datum[qid] = datum
self.id2datum_gt = {**train2014_id2datum, **val2014_id2datum}
# Loading datasets
self.data = []
for split in self.splits:
self.data.extend(
json.load(open(vqa_dir.joinpath("%s.json" % split))))
if verbose:
print("Load %d data from split(s) %s." %
(len(self.data), self.name))
# Convert list to dict (for evaluation)
self.id2datum = {
datum['question_id']: datum
for datum in self.data
}
# Topk Answers
self.ans2label = json.load(
open(vqa_dir.joinpath("trainval_ans2label.json")))
self.label2ans = json.load(
open(vqa_dir.joinpath("trainval_label2ans.json")))
assert len(self.ans2label) == len(self.label2ans)
if verbose:
print('# Answers:', len(self.ans2label))
@property
def num_answers(self):
return len(self.ans2label)
def __len__(self):
return len(self.data)
class VQAEvaluator:
def __init__(self, dataset: VQADataset = None):
self.dataset = dataset
"""https://github.com/GT-Vision-Lab/VQA/blob/master/PythonEvaluationTools/vqaEvaluation/vqaEval.py"""
self.contractions = {"aint": "ain't", "arent": "aren't", "cant": "can't", "couldve": "could've", "couldnt": "couldn't", \
"couldn'tve": "couldn't've", "couldnt've": "couldn't've", "didnt": "didn't", "doesnt": "doesn't", "dont": "don't", "hadnt": "hadn't", \
"hadnt've": "hadn't've", "hadn'tve": "hadn't've", "hasnt": "hasn't", "havent": "haven't", "hed": "he'd", "hed've": "he'd've", \
"he'dve": "he'd've", "hes": "he's", "howd": "how'd", "howll": "how'll", "hows": "how's", "Id've": "I'd've", "I'dve": "I'd've", \
"Im": "I'm", "Ive": "I've", "isnt": "isn't", "itd": "it'd", "itd've": "it'd've", "it'dve": "it'd've", "itll": "it'll", "let's": "let's", \
"maam": "ma'am", "mightnt": "mightn't", "mightnt've": "mightn't've", "mightn'tve": "mightn't've", "mightve": "might've", \
"mustnt": "mustn't", "mustve": "must've", "neednt": "needn't", "notve": "not've", "oclock": "o'clock", "oughtnt": "oughtn't", \
"ow's'at": "'ow's'at", "'ows'at": "'ow's'at", "'ow'sat": "'ow's'at", "shant": "shan't", "shed've": "she'd've", "she'dve": "she'd've", \
"she's": "she's", "shouldve": "should've", "shouldnt": "shouldn't", "shouldnt've": "shouldn't've", "shouldn'tve": "shouldn't've", \
"somebody'd": "somebodyd", "somebodyd've": "somebody'd've", "somebody'dve": "somebody'd've", "somebodyll": "somebody'll", \
"somebodys": "somebody's", "someoned": "someone'd", "someoned've": "someone'd've", "someone'dve": "someone'd've", \
"someonell": "someone'll", "someones": "someone's", "somethingd": "something'd", "somethingd've": "something'd've", \
"something'dve": "something'd've", "somethingll": "something'll", "thats": "that's", "thered": "there'd", "thered've": "there'd've", \
"there'dve": "there'd've", "therere": "there're", "theres": "there's", "theyd": "they'd", "theyd've": "they'd've", \
"they'dve": "they'd've", "theyll": "they'll", "theyre": "they're", "theyve": "they've", "twas": "'twas", "wasnt": "wasn't", \
"wed've": "we'd've", "we'dve": "we'd've", "weve": "we've", "werent": "weren't", "whatll": "what'll", "whatre": "what're", \
"whats": "what's", "whatve": "what've", "whens": "when's", "whered": "where'd", "wheres": "where's", "whereve": "where've", \
"whod": "who'd", "whod've": "who'd've", "who'dve": "who'd've", "wholl": "who'll", "whos": "who's", "whove": "who've", "whyll": "why'll", \
"whyre": "why're", "whys": "why's", "wont": "won't", "wouldve": "would've", "wouldnt": "wouldn't", "wouldnt've": "wouldn't've", \
"wouldn'tve": "wouldn't've", "yall": "y'all", "yall'll": "y'all'll", "y'allll": "y'all'll", "yall'd've": "y'all'd've", \
"y'alld've": "y'all'd've", "y'all'dve": "y'all'd've", "youd": "you'd", "youd've": "you'd've", "you'dve": "you'd've", \
"youll": "you'll", "youre": "you're", "youve": "you've"}
self.manualMap = { 'none': '0',
'zero': '0',
'one': '1',
'two': '2',
'three': '3',
'four': '4',
'five': '5',
'six': '6',
'seven': '7',
'eight': '8',
'nine': '9',
'ten': '10'
}
self.articles = ['a',
'an',
'the'
]
self.periodStrip = re.compile("(?!<=\d)(\.)(?!\d)")
self.commaStrip = re.compile("(\d)(\,)(\d)")
self.punct = [';', r"/", '[', ']', '"', '{', '}',
'(', ')', '=', '+', '\\', '_', '-',
'>', '<', '@', '`', ',', '?', '!']
self.n = 2
def evaluate(self, quesid2ans: dict, normalize_answer=False):
score = 0.
for quesid, ans in quesid2ans.items():
datum = self.dataset.id2datum[quesid]
label = datum['label']
if ans in label:
score += label[ans]
return score / len(quesid2ans)
def dump_result(self, quesid2ans: dict, path):
"""
Dump results to a json file, which could be submitted to the VQA online evaluation.
VQA json file submission requirement:
results = [result]
result = {
"question_id": int,
"answer": str
}
:param quesid2ans: dict of quesid --> ans
:param path: The desired path of saved file.
"""
with open(path, 'w') as f:
result = []
for ques_id, ans in quesid2ans.items():
result.append({
'question_id': ques_id,
'answer': ans
})
json.dump(result, f, indent=4, sort_keys=True)
def evaluate_raw(self, quesid2ans: dict, is_topk_optimal=None):
"""https://github.com/GT-Vision-Lab/VQA/blob/master/PythonEvaluationTools/vqaEvaluation/vqaEval.py"""
gts = self.dataset.id2datum_gt
self.accuracy = {}
self.evalQA = {}
self.evalQuesType = {}
self.evalAnsType = {}
accQA = []
accQuesType = {}
accAnsType = {}
# print("Computing accuracy")
for quesId, resAns in tqdm(quesid2ans.items(), total=len(quesid2ans), ncols=80):
quesId = int(quesId)
datum = self.dataset.id2datum[quesId]
if is_topk_optimal is None:
pass
elif 'is_topk_optimal' in datum:
if datum['is_topk_optimal'] != is_topk_optimal:
continue
resAns = resAns.replace('\n', ' ')
resAns = resAns.replace('\t', ' ')
resAns = resAns.strip()
resAns = self.processPunctuation(resAns)
resAns = self.processDigitArticle(resAns)
gtAcc = []
gtAnswers = [ans['answer'] for ans in gts[quesId]['answers']]
if len(set(gtAnswers)) > 1:
for ansDic in gts[quesId]['answers']:
ansDic['answer'] = self.processPunctuation(ansDic['answer'])
for gtAnsDatum in gts[quesId]['answers']:
otherGTAns = [item for item in gts[quesId]['answers'] if item!=gtAnsDatum]
matchingAns = [item for item in otherGTAns if item['answer']==resAns]
acc = min(1, float(len(matchingAns))/3)
gtAcc.append(acc)
quesType = gts[quesId]['question_type']
ansType = gts[quesId]['answer_type']
avgGTAcc = float(sum(gtAcc))/len(gtAcc)
accQA.append(avgGTAcc)
if quesType not in accQuesType:
accQuesType[quesType] = []
accQuesType[quesType].append(avgGTAcc)
if ansType not in accAnsType:
accAnsType[ansType] = []
accAnsType[ansType].append(avgGTAcc)
self.setEvalQA(quesId, avgGTAcc)
self.setEvalQuesType(quesId, quesType, avgGTAcc)
self.setEvalAnsType(quesId, ansType, avgGTAcc)
if len(accQA) == 0:
return {
'overall': 0,
'perQuestionType': {},
'perAnswerType': {}
}
else:
self.setAccuracy(accQA, accQuesType, accAnsType)
return self.accuracy
def normalize_answer(self, resAns):
resAns = resAns.replace('\n', ' ')
resAns = resAns.replace('\t', ' ')
resAns = resAns.strip()
resAns = self.processPunctuation(resAns)
resAns = self.processDigitArticle(resAns)
resAns = resAns.replace(',', '')
return resAns
def processPunctuation(self, inText):
outText = inText
for p in self.punct:
if (p + ' ' in inText or ' ' + p in inText) or (re.search(self.commaStrip, inText) != None):
outText = outText.replace(p, '')
else:
outText = outText.replace(p, ' ')
outText = self.periodStrip.sub("",
outText,
re.UNICODE)
return outText
def processDigitArticle(self, inText):
outText = []
tempText = inText.lower().split()
for word in tempText:
word = self.manualMap.setdefault(word, word)
if word not in self.articles:
outText.append(word)
else:
pass
for wordId, word in enumerate(outText):
if word in self.contractions:
outText[wordId] = self.contractions[word]
outText = ' '.join(outText)
return outText
def setEvalQA(self, quesId, acc):
self.evalQA[quesId] = round(100*acc, self.n)
def setEvalQuesType(self, quesId, quesType, acc):
if quesType not in self.evalQuesType:
self.evalQuesType[quesType] = {}
self.evalQuesType[quesType][quesId] = round(100*acc, self.n)
def setEvalAnsType(self, quesId, ansType, acc):
if ansType not in self.evalAnsType:
self.evalAnsType[ansType] = {}
self.evalAnsType[ansType][quesId] = round(100*acc, self.n)
def setAccuracy(self, accQA, accQuesType, accAnsType):
self.accuracy['overall'] = round(100*float(sum(accQA))/len(accQA), self.n)
self.accuracy['perQuestionType'] = {quesType: round(100*float(sum(accQuesType[quesType]))/len(accQuesType[quesType]), self.n) for quesType in accQuesType}
self.accuracy['perAnswerType'] = {ansType: round(100*float(sum(accAnsType[ansType]))/len(accAnsType[ansType]), self.n) for ansType in accAnsType}