eP-ALM / app.py
mshukor
fix
e9b379d
raw
history blame
5.38 kB
import os
os.system('cd TimeSformer;'
'pip install .; cd ..')
os.system('ls -l')
os.system('pwd')
import os, sys
sys.path.append("/home/user/app/TimeSformer/")
import timesformer
import torch
from torchvision import transforms
from transformers import AutoTokenizer
from PIL import Image
import json
import os
from torchvision import transforms
from models.epalm import ePALM
import os
from transformers import AutoTokenizer
# import ruamel_yaml as yaml
from ruamel.yaml import YAML
import torch
import gradio as gr
import torchaudio
yaml=YAML(typ='safe')
use_cuda = torch.cuda.is_available()
device = torch.device('cuda') if use_cuda else torch.device('cpu')
device_type = 'cuda' if use_cuda else 'cpu'
## Load model
### Captioning
config = 'configs/image/ePALM_caption.yaml'
# config = yaml.load(open(config, 'r'), Loader=yaml.Loader)
config = yaml.load(open(config, 'r'))
text_model = 'facebook/opt-2.7b'
vision_model_name = 'vit_base_patch16_224'
# text_model = 'facebook/opt-6.7b'
# vision_model_name = 'vit_large_patch16_224'
start_layer_idx = 19
end_layer_idx = 31
low_cpu = True
MODEL = ePALM(opt_model_name=text_model,
vision_model_name=vision_model_name,
use_vis_prefix=True,
start_layer_idx=start_layer_idx,
end_layer_idx=end_layer_idx,
return_hidden_state_vision=True,
config=config,
low_cpu=low_cpu
)
print("Model Built")
MODEL.to(device)
checkpoint_path = 'checkpoints/float32/ePALM_caption/checkpoint_best.pth'
# checkpoint_path = '/data/mshukor/logs/eplam/models/accelerate/ePALM_pt_L_acc_caption/checkpoint_best.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu')
state_dict = checkpoint['model']
msg = MODEL.load_state_dict(state_dict,strict=False)
MODEL.bfloat16()
checkpoint_path = 'checkpoints/float32/ePALM_vqa/checkpoint_best.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu')
state_dict_vqa = checkpoint['model']
## Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(text_model, use_fast=False)
eos_token = tokenizer.eos_token
pad_token = tokenizer.pad_token
special_answer_token = '</a>'
special_tokens_dict = {'additional_special_tokens': [special_answer_token]}
tokenizer.add_special_tokens(special_tokens_dict)
image_size = 224
normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
transform = transforms.Compose([
transforms.Resize((image_size,image_size),interpolation=Image.BICUBIC),
transforms.ToTensor(),
normalize,
])
do_sample=False
num_beams=5
max_length=30
def inference(image, task_type, instruction):
if task_type == 'Image Captioning':
text = ['']
text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device)
model = MODEL
elif task_type == 'Visual Question Answering':
question = instruction+'?'+special_answer_token
text_input = tokenizer(question, padding='longest', return_tensors="pt").to(device)
msg = MODEL.load_state_dict(state_dict_vqa,strict=False)
model = MODEL
print(msg)
else:
raise NotImplemented
image = transform(image)
image = image.to(device,non_blocking=True).unsqueeze(0)
with torch.autocast(device_type=device_type, dtype=torch.bfloat16, enabled=True):
out = model(image=image, text=text_input, mode='generate', return_dict=True, max_length=max_length,
do_sample=do_sample, num_beams=num_beams)
if 'Captioning' in task_type:
for i, o in enumerate(out):
res = tokenizer.decode(o)
response = res.split('</s>')[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
else:
for o in out:
o_list = o.tolist()
response = tokenizer.decode(o_list).split(special_answer_token)[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
return response
inputs = [gr.inputs.Image(type='pil'), gr.inputs.Radio(choices=['Image Captioning', "Visual Question Answering",], type="value", default="Image Captioning", label="Task"), gr.inputs.Textbox(lines=1, label="Instruction")]
outputs = ['text']
examples = [
['examples/images/soccer.jpg', 'Image Captioning', None],
['examples/images/ski.jpg', 'Visual Question Answering', 'what does the woman do?'],
['examples/images/banana.jpg', 'Image Captioning', None],
['examples/images/skateboard.jpg', 'Visual Question Answering', 'what is on top of the skateboard?'],
['examples/images/baseball.jpg', 'Image Captioning', None],
]
title = "eP-ALM"
description = "Gradio Demo for eP-ALM. For this demo, we use 2.7B OPT. As the model runs on CPUs and float16 mixed precision is not supported on CPUs, the generation can take up to 2 mins."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2303.11403' target='_blank'>Paper</a> | <a href='https://github.com/mshukor/eP-ALM' target='_blank'>Github Repo</a></p>"
io = gr.Interface(fn=inference, inputs=inputs, outputs=outputs,
title=title, description=description, article=article, examples=examples, cache_examples=False)
io.launch()