mshukor
init
3eb682b
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
"""ResNe(X)t Head helper."""
import torch
import torch.nn as nn
class ResNetBasicHead(nn.Module):
"""
ResNe(X)t 3D head.
This layer performs a fully-connected projection during training, when the
input size is 1x1x1. It performs a convolutional projection during testing
when the input size is larger than 1x1x1. If the inputs are from multiple
different pathways, the inputs will be concatenated after pooling.
"""
def __init__(
self,
dim_in,
num_classes,
pool_size,
dropout_rate=0.0,
act_func="softmax",
):
"""
The `__init__` method of any subclass should also contain these
arguments.
ResNetBasicHead takes p pathways as input where p in [1, infty].
Args:
dim_in (list): the list of channel dimensions of the p inputs to the
ResNetHead.
num_classes (int): the channel dimensions of the p outputs to the
ResNetHead.
pool_size (list): the list of kernel sizes of p spatial temporal
poolings, temporal pool kernel size, spatial pool kernel size,
spatial pool kernel size in order.
dropout_rate (float): dropout rate. If equal to 0.0, perform no
dropout.
act_func (string): activation function to use. 'softmax': applies
softmax on the output. 'sigmoid': applies sigmoid on the output.
"""
super(ResNetBasicHead, self).__init__()
assert (
len({len(pool_size), len(dim_in)}) == 1
), "pathway dimensions are not consistent."
self.num_pathways = len(pool_size)
for pathway in range(self.num_pathways):
if pool_size[pathway] is None:
avg_pool = nn.AdaptiveAvgPool3d((1, 1, 1))
else:
avg_pool = nn.AvgPool3d(pool_size[pathway], stride=1)
self.add_module("pathway{}_avgpool".format(pathway), avg_pool)
if dropout_rate > 0.0:
self.dropout = nn.Dropout(dropout_rate)
# Perform FC in a fully convolutional manner. The FC layer will be
# initialized with a different std comparing to convolutional layers.
self.projection = nn.Linear(sum(dim_in), num_classes, bias=True)
# Softmax for evaluation and testing.
if act_func == "softmax":
self.act = nn.Softmax(dim=4)
elif act_func == "sigmoid":
self.act = nn.Sigmoid()
else:
raise NotImplementedError(
"{} is not supported as an activation"
"function.".format(act_func)
)
def forward(self, inputs):
assert (
len(inputs) == self.num_pathways
), "Input tensor does not contain {} pathway".format(self.num_pathways)
pool_out = []
for pathway in range(self.num_pathways):
m = getattr(self, "pathway{}_avgpool".format(pathway))
pool_out.append(m(inputs[pathway]))
x = torch.cat(pool_out, 1)
# (N, C, T, H, W) -> (N, T, H, W, C).
x = x.permute((0, 2, 3, 4, 1))
# Perform dropout.
if hasattr(self, "dropout"):
x = self.dropout(x)
x = self.projection(x)
# Performs fully convlutional inference.
if not self.training:
x = self.act(x)
x = x.mean([1, 2, 3])
x = x.view(x.shape[0], -1)
return x
class X3DHead(nn.Module):
"""
X3D head.
This layer performs a fully-connected projection during training, when the
input size is 1x1x1. It performs a convolutional projection during testing
when the input size is larger than 1x1x1. If the inputs are from multiple
different pathways, the inputs will be concatenated after pooling.
"""
def __init__(
self,
dim_in,
dim_inner,
dim_out,
num_classes,
pool_size,
dropout_rate=0.0,
act_func="softmax",
inplace_relu=True,
eps=1e-5,
bn_mmt=0.1,
norm_module=nn.BatchNorm3d,
bn_lin5_on=False,
):
"""
The `__init__` method of any subclass should also contain these
arguments.
X3DHead takes a 5-dim feature tensor (BxCxTxHxW) as input.
Args:
dim_in (float): the channel dimension C of the input.
num_classes (int): the channel dimensions of the output.
pool_size (float): a single entry list of kernel size for
spatiotemporal pooling for the TxHxW dimensions.
dropout_rate (float): dropout rate. If equal to 0.0, perform no
dropout.
act_func (string): activation function to use. 'softmax': applies
softmax on the output. 'sigmoid': applies sigmoid on the output.
inplace_relu (bool): if True, calculate the relu on the original
input without allocating new memory.
eps (float): epsilon for batch norm.
bn_mmt (float): momentum for batch norm. Noted that BN momentum in
PyTorch = 1 - BN momentum in Caffe2.
norm_module (nn.Module): nn.Module for the normalization layer. The
default is nn.BatchNorm3d.
bn_lin5_on (bool): if True, perform normalization on the features
before the classifier.
"""
super(X3DHead, self).__init__()
self.pool_size = pool_size
self.dropout_rate = dropout_rate
self.num_classes = num_classes
self.act_func = act_func
self.eps = eps
self.bn_mmt = bn_mmt
self.inplace_relu = inplace_relu
self.bn_lin5_on = bn_lin5_on
self._construct_head(dim_in, dim_inner, dim_out, norm_module)
def _construct_head(self, dim_in, dim_inner, dim_out, norm_module):
self.conv_5 = nn.Conv3d(
dim_in,
dim_inner,
kernel_size=(1, 1, 1),
stride=(1, 1, 1),
padding=(0, 0, 0),
bias=False,
)
self.conv_5_bn = norm_module(
num_features=dim_inner, eps=self.eps, momentum=self.bn_mmt
)
self.conv_5_relu = nn.ReLU(self.inplace_relu)
if self.pool_size is None:
self.avg_pool = nn.AdaptiveAvgPool3d((1, 1, 1))
else:
self.avg_pool = nn.AvgPool3d(self.pool_size, stride=1)
self.lin_5 = nn.Conv3d(
dim_inner,
dim_out,
kernel_size=(1, 1, 1),
stride=(1, 1, 1),
padding=(0, 0, 0),
bias=False,
)
if self.bn_lin5_on:
self.lin_5_bn = norm_module(
num_features=dim_out, eps=self.eps, momentum=self.bn_mmt
)
self.lin_5_relu = nn.ReLU(self.inplace_relu)
if self.dropout_rate > 0.0:
self.dropout = nn.Dropout(self.dropout_rate)
# Perform FC in a fully convolutional manner. The FC layer will be
# initialized with a different std comparing to convolutional layers.
self.projection = nn.Linear(dim_out, self.num_classes, bias=True)
# Softmax for evaluation and testing.
if self.act_func == "softmax":
self.act = nn.Softmax(dim=4)
elif self.act_func == "sigmoid":
self.act = nn.Sigmoid()
else:
raise NotImplementedError(
"{} is not supported as an activation"
"function.".format(self.act_func)
)
def forward(self, inputs):
# In its current design the X3D head is only useable for a single
# pathway input.
assert len(inputs) == 1, "Input tensor does not contain 1 pathway"
x = self.conv_5(inputs[0])
x = self.conv_5_bn(x)
x = self.conv_5_relu(x)
x = self.avg_pool(x)
x = self.lin_5(x)
if self.bn_lin5_on:
x = self.lin_5_bn(x)
x = self.lin_5_relu(x)
# (N, C, T, H, W) -> (N, T, H, W, C).
x = x.permute((0, 2, 3, 4, 1))
# Perform dropout.
if hasattr(self, "dropout"):
x = self.dropout(x)
x = self.projection(x)
# Performs fully convlutional inference.
if not self.training:
x = self.act(x)
x = x.mean([1, 2, 3])
x = x.view(x.shape[0], -1)
return x