eP-ALM / TimeSformer /tools /train_net.py
mshukor
init
3eb682b
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
"""Train a video classification model."""
import numpy as np
import pprint
import torch
from fvcore.nn.precise_bn import get_bn_modules, update_bn_stats
import timesformer.models.losses as losses
import timesformer.models.optimizer as optim
import timesformer.utils.checkpoint as cu
import timesformer.utils.distributed as du
import timesformer.utils.logging as logging
import timesformer.utils.metrics as metrics
import timesformer.utils.misc as misc
import timesformer.visualization.tensorboard_vis as tb
from timesformer.datasets import loader
from timesformer.models import build_model
from timesformer.utils.meters import TrainMeter, ValMeter
from timesformer.utils.multigrid import MultigridSchedule
from timm.data import Mixup
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
logger = logging.get_logger(__name__)
def train_epoch(
train_loader, model, optimizer, train_meter, cur_epoch, cfg, writer=None
):
"""
Perform the video training for one epoch.
Args:
train_loader (loader): video training loader.
model (model): the video model to train.
optimizer (optim): the optimizer to perform optimization on the model's
parameters.
train_meter (TrainMeter): training meters to log the training performance.
cur_epoch (int): current epoch of training.
cfg (CfgNode): configs. Details can be found in
slowfast/config/defaults.py
writer (TensorboardWriter, optional): TensorboardWriter object
to writer Tensorboard log.
"""
# Enable train mode.
model.train()
train_meter.iter_tic()
data_size = len(train_loader)
cur_global_batch_size = cfg.NUM_SHARDS * cfg.TRAIN.BATCH_SIZE
num_iters = cfg.GLOBAL_BATCH_SIZE // cur_global_batch_size
for cur_iter, (inputs, labels, _, meta) in enumerate(train_loader):
# Transfer the data to the current GPU device.
if cfg.NUM_GPUS:
if isinstance(inputs, (list,)):
for i in range(len(inputs)):
inputs[i] = inputs[i].cuda(non_blocking=True)
else:
inputs = inputs.cuda(non_blocking=True)
labels = labels.cuda()
for key, val in meta.items():
if isinstance(val, (list,)):
for i in range(len(val)):
val[i] = val[i].cuda(non_blocking=True)
else:
meta[key] = val.cuda(non_blocking=True)
# Update the learning rate.
lr = optim.get_epoch_lr(cur_epoch + float(cur_iter) / data_size, cfg)
optim.set_lr(optimizer, lr)
train_meter.data_toc()
# Explicitly declare reduction to mean.
if not cfg.MIXUP.ENABLED:
loss_fun = losses.get_loss_func(cfg.MODEL.LOSS_FUNC)(reduction="mean")
else:
mixup_fn = Mixup(
mixup_alpha=cfg.MIXUP.ALPHA, cutmix_alpha=cfg.MIXUP.CUTMIX_ALPHA, cutmix_minmax=cfg.MIXUP.CUTMIX_MINMAX, prob=cfg.MIXUP.PROB, switch_prob=cfg.MIXUP.SWITCH_PROB, mode=cfg.MIXUP.MODE,
label_smoothing=0.1, num_classes=cfg.MODEL.NUM_CLASSES)
hard_labels = labels
inputs, labels = mixup_fn(inputs, labels)
loss_fun = SoftTargetCrossEntropy()
if cfg.DETECTION.ENABLE:
preds = model(inputs, meta["boxes"])
else:
preds = model(inputs)
# Compute the loss.
loss = loss_fun(preds, labels)
if cfg.MIXUP.ENABLED:
labels = hard_labels
# check Nan Loss.
misc.check_nan_losses(loss)
if cur_global_batch_size >= cfg.GLOBAL_BATCH_SIZE:
# Perform the backward pass.
optimizer.zero_grad()
loss.backward()
# Update the parameters.
optimizer.step()
else:
if cur_iter == 0:
optimizer.zero_grad()
loss.backward()
if (cur_iter + 1) % num_iters == 0:
for p in model.parameters():
p.grad /= num_iters
optimizer.step()
optimizer.zero_grad()
if cfg.DETECTION.ENABLE:
if cfg.NUM_GPUS > 1:
loss = du.all_reduce([loss])[0]
loss = loss.item()
# Update and log stats.
train_meter.update_stats(None, None, None, loss, lr)
# write to tensorboard format if available.
if writer is not None:
writer.add_scalars(
{"Train/loss": loss, "Train/lr": lr},
global_step=data_size * cur_epoch + cur_iter,
)
else:
top1_err, top5_err = None, None
if cfg.DATA.MULTI_LABEL:
# Gather all the predictions across all the devices.
if cfg.NUM_GPUS > 1:
[loss] = du.all_reduce([loss])
loss = loss.item()
else:
# Compute the errors.
num_topks_correct = metrics.topks_correct(preds, labels, (1, 5))
top1_err, top5_err = [
(1.0 - x / preds.size(0)) * 100.0 for x in num_topks_correct
]
# Gather all the predictions across all the devices.
if cfg.NUM_GPUS > 1:
loss, top1_err, top5_err = du.all_reduce(
[loss, top1_err, top5_err]
)
# Copy the stats from GPU to CPU (sync point).
loss, top1_err, top5_err = (
loss.item(),
top1_err.item(),
top5_err.item(),
)
# Update and log stats.
train_meter.update_stats(
top1_err,
top5_err,
loss,
lr,
inputs[0].size(0)
* max(
cfg.NUM_GPUS, 1
), # If running on CPU (cfg.NUM_GPUS == 1), use 1 to represent 1 CPU.
)
# write to tensorboard format if available.
if writer is not None:
writer.add_scalars(
{
"Train/loss": loss,
"Train/lr": lr,
"Train/Top1_err": top1_err,
"Train/Top5_err": top5_err,
},
global_step=data_size * cur_epoch + cur_iter,
)
train_meter.iter_toc() # measure allreduce for this meter
train_meter.log_iter_stats(cur_epoch, cur_iter)
train_meter.iter_tic()
# Log epoch stats.
train_meter.log_epoch_stats(cur_epoch)
train_meter.reset()
@torch.no_grad()
def eval_epoch(val_loader, model, val_meter, cur_epoch, cfg, writer=None):
"""
Evaluate the model on the val set.
Args:
val_loader (loader): data loader to provide validation data.
model (model): model to evaluate the performance.
val_meter (ValMeter): meter instance to record and calculate the metrics.
cur_epoch (int): number of the current epoch of training.
cfg (CfgNode): configs. Details can be found in
slowfast/config/defaults.py
writer (TensorboardWriter, optional): TensorboardWriter object
to writer Tensorboard log.
"""
# Evaluation mode enabled. The running stats would not be updated.
model.eval()
val_meter.iter_tic()
for cur_iter, (inputs, labels, _, meta) in enumerate(val_loader):
if cfg.NUM_GPUS:
# Transferthe data to the current GPU device.
if isinstance(inputs, (list,)):
for i in range(len(inputs)):
inputs[i] = inputs[i].cuda(non_blocking=True)
else:
inputs = inputs.cuda(non_blocking=True)
labels = labels.cuda()
for key, val in meta.items():
if isinstance(val, (list,)):
for i in range(len(val)):
val[i] = val[i].cuda(non_blocking=True)
else:
meta[key] = val.cuda(non_blocking=True)
val_meter.data_toc()
if cfg.DETECTION.ENABLE:
# Compute the predictions.
preds = model(inputs, meta["boxes"])
ori_boxes = meta["ori_boxes"]
metadata = meta["metadata"]
if cfg.NUM_GPUS:
preds = preds.cpu()
ori_boxes = ori_boxes.cpu()
metadata = metadata.cpu()
if cfg.NUM_GPUS > 1:
preds = torch.cat(du.all_gather_unaligned(preds), dim=0)
ori_boxes = torch.cat(du.all_gather_unaligned(ori_boxes), dim=0)
metadata = torch.cat(du.all_gather_unaligned(metadata), dim=0)
val_meter.iter_toc()
# Update and log stats.
val_meter.update_stats(preds, ori_boxes, metadata)
else:
preds = model(inputs)
if cfg.DATA.MULTI_LABEL:
if cfg.NUM_GPUS > 1:
preds, labels = du.all_gather([preds, labels])
else:
# Compute the errors.
num_topks_correct = metrics.topks_correct(preds, labels, (1, 5))
# Combine the errors across the GPUs.
top1_err, top5_err = [
(1.0 - x / preds.size(0)) * 100.0 for x in num_topks_correct
]
if cfg.NUM_GPUS > 1:
top1_err, top5_err = du.all_reduce([top1_err, top5_err])
# Copy the errors from GPU to CPU (sync point).
top1_err, top5_err = top1_err.item(), top5_err.item()
val_meter.iter_toc()
# Update and log stats.
val_meter.update_stats(
top1_err,
top5_err,
inputs[0].size(0)
* max(
cfg.NUM_GPUS, 1
), # If running on CPU (cfg.NUM_GPUS == 1), use 1 to represent 1 CPU.
)
# write to tensorboard format if available.
if writer is not None:
writer.add_scalars(
{"Val/Top1_err": top1_err, "Val/Top5_err": top5_err},
global_step=len(val_loader) * cur_epoch + cur_iter,
)
val_meter.update_predictions(preds, labels)
val_meter.log_iter_stats(cur_epoch, cur_iter)
val_meter.iter_tic()
# Log epoch stats.
val_meter.log_epoch_stats(cur_epoch)
# write to tensorboard format if available.
if writer is not None:
if cfg.DETECTION.ENABLE:
writer.add_scalars(
{"Val/mAP": val_meter.full_map}, global_step=cur_epoch
)
else:
all_preds = [pred.clone().detach() for pred in val_meter.all_preds]
all_labels = [
label.clone().detach() for label in val_meter.all_labels
]
if cfg.NUM_GPUS:
all_preds = [pred.cpu() for pred in all_preds]
all_labels = [label.cpu() for label in all_labels]
writer.plot_eval(
preds=all_preds, labels=all_labels, global_step=cur_epoch
)
val_meter.reset()
def calculate_and_update_precise_bn(loader, model, num_iters=200, use_gpu=True):
"""
Update the stats in bn layers by calculate the precise stats.
Args:
loader (loader): data loader to provide training data.
model (model): model to update the bn stats.
num_iters (int): number of iterations to compute and update the bn stats.
use_gpu (bool): whether to use GPU or not.
"""
def _gen_loader():
for inputs, *_ in loader:
if use_gpu:
if isinstance(inputs, (list,)):
for i in range(len(inputs)):
inputs[i] = inputs[i].cuda(non_blocking=True)
else:
inputs = inputs.cuda(non_blocking=True)
yield inputs
# Update the bn stats.
update_bn_stats(model, _gen_loader(), num_iters)
def build_trainer(cfg):
"""
Build training model and its associated tools, including optimizer,
dataloaders and meters.
Args:
cfg (CfgNode): configs. Details can be found in
slowfast/config/defaults.py
Returns:
model (nn.Module): training model.
optimizer (Optimizer): optimizer.
train_loader (DataLoader): training data loader.
val_loader (DataLoader): validatoin data loader.
precise_bn_loader (DataLoader): training data loader for computing
precise BN.
train_meter (TrainMeter): tool for measuring training stats.
val_meter (ValMeter): tool for measuring validation stats.
"""
# Build the video model and print model statistics.
model = build_model(cfg)
if du.is_master_proc() and cfg.LOG_MODEL_INFO:
misc.log_model_info(model, cfg, use_train_input=True)
# Construct the optimizer.
optimizer = optim.construct_optimizer(model, cfg)
# Create the video train and val loaders.
train_loader = loader.construct_loader(cfg, "train")
val_loader = loader.construct_loader(cfg, "val")
precise_bn_loader = loader.construct_loader(
cfg, "train", is_precise_bn=True
)
# Create meters.
train_meter = TrainMeter(len(train_loader), cfg)
val_meter = ValMeter(len(val_loader), cfg)
return (
model,
optimizer,
train_loader,
val_loader,
precise_bn_loader,
train_meter,
val_meter,
)
def train(cfg):
"""
Train a video model for many epochs on train set and evaluate it on val set.
Args:
cfg (CfgNode): configs. Details can be found in
slowfast/config/defaults.py
"""
# Set up environment.
du.init_distributed_training(cfg)
# Set random seed from configs.
np.random.seed(cfg.RNG_SEED)
torch.manual_seed(cfg.RNG_SEED)
# Setup logging format.
logging.setup_logging(cfg.OUTPUT_DIR)
# Init multigrid.
multigrid = None
if cfg.MULTIGRID.LONG_CYCLE or cfg.MULTIGRID.SHORT_CYCLE:
multigrid = MultigridSchedule()
cfg = multigrid.init_multigrid(cfg)
if cfg.MULTIGRID.LONG_CYCLE:
cfg, _ = multigrid.update_long_cycle(cfg, cur_epoch=0)
# Print config.
logger.info("Train with config:")
logger.info(pprint.pformat(cfg))
# Build the video model and print model statistics.
model = build_model(cfg)
if du.is_master_proc() and cfg.LOG_MODEL_INFO:
misc.log_model_info(model, cfg, use_train_input=True)
# Construct the optimizer.
optimizer = optim.construct_optimizer(model, cfg)
# Load a checkpoint to resume training if applicable.
if not cfg.TRAIN.FINETUNE:
start_epoch = cu.load_train_checkpoint(cfg, model, optimizer)
else:
start_epoch = 0
cu.load_checkpoint(cfg.TRAIN.CHECKPOINT_FILE_PATH, model)
# Create the video train and val loaders.
train_loader = loader.construct_loader(cfg, "train")
val_loader = loader.construct_loader(cfg, "val")
precise_bn_loader = (
loader.construct_loader(cfg, "train", is_precise_bn=True)
if cfg.BN.USE_PRECISE_STATS
else None
)
train_meter = TrainMeter(len(train_loader), cfg)
val_meter = ValMeter(len(val_loader), cfg)
# set up writer for logging to Tensorboard format.
if cfg.TENSORBOARD.ENABLE and du.is_master_proc(
cfg.NUM_GPUS * cfg.NUM_SHARDS
):
writer = tb.TensorboardWriter(cfg)
else:
writer = None
# Perform the training loop.
logger.info("Start epoch: {}".format(start_epoch + 1))
for cur_epoch in range(start_epoch, cfg.SOLVER.MAX_EPOCH):
if cfg.MULTIGRID.LONG_CYCLE:
cfg, changed = multigrid.update_long_cycle(cfg, cur_epoch)
if changed:
(
model,
optimizer,
train_loader,
val_loader,
precise_bn_loader,
train_meter,
val_meter,
) = build_trainer(cfg)
# Load checkpoint.
if cu.has_checkpoint(cfg.OUTPUT_DIR):
last_checkpoint = cu.get_last_checkpoint(cfg.OUTPUT_DIR)
assert "{:05d}.pyth".format(cur_epoch) in last_checkpoint
else:
last_checkpoint = cfg.TRAIN.CHECKPOINT_FILE_PATH
logger.info("Load from {}".format(last_checkpoint))
cu.load_checkpoint(
last_checkpoint, model, cfg.NUM_GPUS > 1, optimizer
)
# Shuffle the dataset.
loader.shuffle_dataset(train_loader, cur_epoch)
# Train for one epoch.
train_epoch(
train_loader, model, optimizer, train_meter, cur_epoch, cfg, writer
)
is_checkp_epoch = cu.is_checkpoint_epoch(
cfg,
cur_epoch,
None if multigrid is None else multigrid.schedule,
)
is_eval_epoch = misc.is_eval_epoch(
cfg, cur_epoch, None if multigrid is None else multigrid.schedule
)
# Compute precise BN stats.
if (
(is_checkp_epoch or is_eval_epoch)
and cfg.BN.USE_PRECISE_STATS
and len(get_bn_modules(model)) > 0
):
calculate_and_update_precise_bn(
precise_bn_loader,
model,
min(cfg.BN.NUM_BATCHES_PRECISE, len(precise_bn_loader)),
cfg.NUM_GPUS > 0,
)
_ = misc.aggregate_sub_bn_stats(model)
# Save a checkpoint.
if is_checkp_epoch:
cu.save_checkpoint(cfg.OUTPUT_DIR, model, optimizer, cur_epoch, cfg)
# Evaluate the model on validation set.
if is_eval_epoch:
eval_epoch(val_loader, model, val_meter, cur_epoch, cfg, writer)
if writer is not None:
writer.close()