eP-ALM / float32 /video_vqa.py
mshukor
init
3eb682b
import argparse
import os
import ruamel_yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from models.epalm import ePALM
from models.utils import freeze_whole_model, unfreeze_parameters, print_trainable_params_percentage
from transformers import AutoTokenizer
import utils
from dataset.video_vqa import get_loader
from scheduler import create_scheduler
from optim import create_optimizer
from tqdm import tqdm
from models.utils import filter_state, filter_msg, exclude_list
def train(model, data_loader, optimizer, tokenizer, epoch, warmup_steps, device, scheduler, config):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('loss', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
config_optim = utils.AttrDict(config['optimizer'])
prompt_lr = config_optim.prompt_lr if hasattr(config_optim, 'prompt_lr') else None
connector_lr = config_optim.connector_lr if hasattr(config_optim, 'connector_lr') else None
vis_lr = config_optim.vis_lr if hasattr(config_optim, 'vis_lr') else None
text_lr = config_optim.text_lr if hasattr(config_optim, 'text_lr') else None
print(vis_lr, text_lr, connector_lr, len(optimizer.param_groups))
if prompt_lr is not None:
metric_logger.add_meter('prompt_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Train Epoch: [{}]'.format(epoch)
print_freq = 50
step_size = 100
warmup_iterations = warmup_steps*step_size
lm_loss_weight = config.get('lm_loss_weight', 1)
special_answer_token = config.get('special_answer_token', None)
special_eo_answer_token = config.get('special_eo_answer_token', None)
eos_token = tokenizer.eos_token if special_eo_answer_token is None else special_eo_answer_token
for i, batch in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
image = batch['images'].to(device,non_blocking=True)
question = batch['sent']
answer = batch['answers']
questions_answers = []
if special_answer_token is not None:
questions_answers += [question[i] + "?" + special_answer_token + answer[i].replace('[SEP]','') + eos_token for i in range(len(question))]
else:
questions_answers += [question[i] + "</s>" + answer[i].replace('[SEP]','') + eos_token for i in range(len(question))]
questions_answers_input = tokenizer(questions_answers, padding='longest', return_tensors="pt").to(device)
answer_targets = questions_answers_input.input_ids.masked_fill(questions_answers_input.input_ids == tokenizer.pad_token_id, -100)
images = image
answer_output = model(image=images,
text=questions_answers_input,
labels = answer_targets,
return_dict = True,
mode='train',
reduction='none',
)
loss = answer_output.loss
loss = loss.sum()/image.size(0)
loss = loss*lm_loss_weight
optimizer.zero_grad()
loss.backward()
optimizer.step()
metric_logger.update(loss=loss.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
if prompt_lr is not None:
metric_logger.update(prompt_lr=optimizer.param_groups[1]["lr"])
if i % print_freq == 0:
lrs = [g["lr"] for g in optimizer.param_groups]
print(lrs)
if epoch==0 and i%step_size==0 and i<=warmup_iterations:
if scheduler is not None:
scheduler.step(i//step_size)
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def predict(model, loader, tokenizer, device, dump_path=None, verbose=False, distributed=False, special_answer_token=None, special_eo_answer_token=None):
model.eval()
eos_token = tokenizer.eos_token if special_eo_answer_token is None else special_eo_answer_token
pad_token = tokenizer.pad_token
with torch.no_grad():
quesid2ans = {}
if verbose:
pbar = tqdm(total=len(loader), ncols=120, desc="Prediction")
for i, batch in enumerate(loader):
image = batch['images'].to(device,non_blocking=True)
question = batch['sent']
question_id = batch['question_ids']
if special_answer_token is not None:
question = [q+'?'+special_answer_token for q in question]
else:
question = [q+eos_token for q in question]
question_input = tokenizer(question, padding='longest', return_tensors="pt").to(device)
out = model(image=image, text=question_input, mode='generate', return_dict=True, max_length=30, do_sample=True)
for ques_id, o in zip(question_id, out):
o_list = o.tolist()
try:
if special_answer_token is not None:
response = tokenizer.decode(o_list).split(special_answer_token)[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
else:
response = tokenizer.decode(o_list).split('</s>')[2].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
except TypeError:
print(o_list)
response = ' '
ques_id = ques_id
quesid2ans[ques_id] = response
if verbose:
pbar.update(1)
if verbose:
pbar.close()
if distributed:
dist.barrier()
qid2ans_list = utils.all_gather(quesid2ans)
if verbose:
quesid2ans = {}
for qid2ans in qid2ans_list:
for k, v in qid2ans.items():
quesid2ans[k] = v
if dump_path is not None:
evaluator = loader.evaluator
evaluator.dump_result(quesid2ans, dump_path)
return quesid2ans
def evaluate(model, data_loader, tokenizer, device,
distributed=False, special_answer_token=None, special_eo_answer_token=None):
verbose = utils.is_main_process()
quesid2ans = predict(model, data_loader, tokenizer, device, verbose=verbose,
distributed=distributed, special_answer_token=special_answer_token, special_eo_answer_token=special_eo_answer_token)
evaluator = data_loader.evaluator
acc_dict = {}
topk_score = evaluator.evaluate(quesid2ans, normalize_answer=True)
acc_dict['topk_score'] = topk_score
return acc_dict
def main(args, config):
os.environ['TORCH_HOME'] = os.environ['XDG_CACHE_HOME']+'/torch'
utils.init_distributed_mode(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
start_epoch = 0
max_epoch = config['schedular']['epochs']
warmup_steps = config['schedular']['warmup_epochs']
#### Dataset ####
print("Creating dataset")
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
else:
num_tasks = None
global_rank = None
num_workers = config.get('num_workers', 4)
train_topk = config.get('train_topk', -1)
valid_topk = config.get('valid_topk', -1)
data_dir = args.data_dir
args.image_size = config.get('image_res', 224)
args.use_data_augmentation = True
# video
args.num_frames = config.get('num_frames', 4)
args.as_images = config.get('as_images', True)
args.num_tries = config.get('num_tries', 1)
args.sample_type = config.get('sample_type', 'rand')
train_split = config.get('train_split', 'train')
val_split = config.get('val_split', 'val')
test_split = config.get('test_split', 'test')
train_loader = get_loader(
args,
split=train_split, mode='train', batch_size=config['batch_size_train'],
distributed=args.distributed,
workers=num_workers,
topk=train_topk,
data_dir=data_dir,
local_rank=global_rank, world_size=num_tasks, verbose=True
)
args.raw_label = False
print('# len train loader:', len(train_loader))
print(f'Building val loader')
val_loader = get_loader(
args,
split=val_split, mode='val', batch_size=config['batch_size_test'],
distributed=args.distributed,
workers=4,
topk=valid_topk,data_dir=data_dir,
local_rank=global_rank, world_size=num_tasks, verbose=True
)
print('# len val loader:', len(val_loader))
print(f'Building test loader')
test_loader = get_loader(
args,
split=test_split, mode='val', batch_size=config['batch_size_test'],
distributed=args.distributed,
workers=4,
topk=valid_topk,data_dir=data_dir,
local_rank=global_rank, world_size=num_tasks, verbose=True
)
print('# len test loader:', len(test_loader))
if args.submit:
print(f'Building test submit loader ...')
submit_test_loader = get_loader(
args,
split='test', mode='val', batch_size=config['batch_size_test'],
distributed=args.distributed, gpu=args.gpu,
workers=4,
topk=valid_topk, data_dir=data_dir,
local_rank=global_rank, world_size=num_tasks, verbose=True
)
#### Model ####
print("Creating model")
start_layer_idx = config.get('start_layer_idx', 0)
end_layer_idx = config.get('end_layer_idx', 0)
vision_model_name = config.get('vision_model_name', args.vision_model)
model = ePALM(opt_model_name = args.text_model,
vision_model_name = vision_model_name,
use_vis_prefix = True,
start_layer_idx = start_layer_idx,
end_layer_idx = end_layer_idx,
return_hidden_state_vision = True,
config=config,
)
model = model.to(device)
tokenizer_name = config.get('tokenizer_name', args.text_model)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=False, local_files_only=True)
special_answer_token = config.get('special_answer_token', None)
special_eo_answer_token = config.get('special_eo_answer_token', None)
if special_answer_token is not None:
special_tokens_dict = {'additional_special_tokens': [special_answer_token]}
if special_eo_answer_token is not None:
special_tokens_dict['additional_special_tokens'] += [special_eo_answer_token]
tokenizer.add_special_tokens(special_tokens_dict)
print("Adding special token:", special_tokens_dict)
print(tokenizer)
arg_opt = utils.AttrDict(config['optimizer'])
optimizer = create_optimizer(arg_opt, model, config=config['optimizer'])
if hasattr(arg_opt, 'prompt_lr') and arg_opt.prompt_lr is not None:
print('\tInitial other params params lr: %f' % optimizer.param_groups[0]['lr'])
print('\tInitial prompt params lr: %f' % optimizer.param_groups[1]['lr'])
arg_sche = utils.AttrDict(config['schedular'])
lr_scheduler, _ = create_scheduler(arg_sche, optimizer)
if args.checkpoint:
checkpoint = torch.load(args.checkpoint, map_location='cpu')
state_dict = checkpoint['model']
msg = model.load_state_dict(state_dict,strict=False)
msg = filter_msg(msg, exclude_list)
print('load checkpoint from %s'%args.checkpoint)
print(msg)
if 'best_valid' in checkpoint:
print("load best valid {} at epoch {}".format(checkpoint['best_valid'] , checkpoint['best_epoch'] ))
if args.resume:
model = model.to(device)
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
start_epoch = checkpoint['epoch']+1
print(checkpoint.keys())
if 'best_valid' in checkpoint:
best_valid = checkpoint['best_valid']
best_epoch = checkpoint['best_epoch']
print("load best valid {} at epoch {}".format(best_valid, best_epoch))
freeze_whole_model(model)
unfreeze_parameters(model, config)
print_trainable_params_percentage(model)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
print("Start training")
start_time = time.time()
best_valid = 0.
best_epoch = 0
for epoch in range(start_epoch, max_epoch):
if epoch>0:
if lr_scheduler is not None:
lr_scheduler.step(epoch+warmup_steps)
if not args.evaluate:
if args.distributed:
train_loader.sampler.set_epoch(epoch)
train_stats = train(model, train_loader, optimizer, tokenizer, epoch, warmup_steps, device, lr_scheduler, config)
if args.evaluate:
break
score_dict = evaluate(model, val_loader, tokenizer, device, distributed=args.distributed,
special_answer_token=special_answer_token, special_eo_answer_token=special_eo_answer_token)
print(score_dict)
if utils.is_main_process():
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
}
with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
f.write(json.dumps(log_stats) + "\n")
if lr_scheduler is None:
lr_scheduler_state_dict = {}
else:
lr_scheduler_state_dict = lr_scheduler.state_dict()
save_obj = {
'model': filter_state(model_without_ddp.state_dict(), exclude_list),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler_state_dict,
'config': config,
'epoch': epoch,
'best_valid': best_valid,
'best_epoch': best_epoch,
}
if args.save_best:
valid_score = score_dict['topk_score'] * 100.
if valid_score > best_valid or epoch == 0:
best_valid = valid_score
best_epoch = epoch
save_obj['best_valid'] = best_valid
save_obj['best_epoch'] = best_epoch
print("save best epoch:", best_epoch)
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth'))
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_last.pth'))
dist.barrier()
if lr_scheduler is None:
lr_scheduler_state_dict = {}
else:
lr_scheduler_state_dict = lr_scheduler.state_dict()
save_obj = {
'model': filter_state(model_without_ddp.state_dict(), exclude_list),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler_state_dict,
'config': config,
'epoch': epoch,
'best_valid': best_valid,
'best_epoch': best_epoch,
}
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_last.pth'))
verbose = utils.is_main_process()
if not args.evaluate:
checkpoint = torch.load(os.path.join(args.output_dir, 'checkpoint_best.pth'), map_location='cpu')
state_dict = checkpoint['model']
msg = model.module.load_state_dict(state_dict,strict=False)
msg = filter_msg(msg, exclude_list)
print('load checkpoint for test from %s'%os.path.join(args.output_dir, 'checkpoint_best.pth'))
print(msg)
quesid2ans = predict(model, test_loader, tokenizer, device, verbose=verbose,
distributed=args.distributed, special_answer_token=special_answer_token, special_eo_answer_token=special_eo_answer_token)
evaluator = test_loader.evaluator
score_dict = evaluator.evaluate(quesid2ans, normalize_answer=True)
print("Test accuracy:", score_dict)
if args.submit:
dump_path = os.path.join(args.output_dir, 'submit.json')
predict(submit_test_loader, dump_path)
if args.distributed:
dist.barrier()
exit()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/VQA.yaml')
parser.add_argument('--checkpoint', default='')
parser.add_argument('--output_dir', default='output/vqa')
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--text_model', default='facebook/opt-350m')
parser.add_argument('--vision_model', default='vit_base_patch16_224')
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', default=True, type=bool)
parser.add_argument('--data_dir', default='/data/mshukor/data')
parser.add_argument('--resume', action='store_true')
parser.add_argument('--submit', action='store_true')
parser.add_argument('--save_best', action='store_true')
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
args.result_dir = os.path.join(args.output_dir, 'result')
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
Path(args.result_dir).mkdir(parents=True, exist_ok=True)
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
main(args, config)