#!/usr/bin/env python3 import logging import numpy as np import os import random import time from collections import defaultdict import cv2 import torch from fvcore.common.file_io import PathManager from torch.utils.data.distributed import DistributedSampler from . import transform as transform logger = logging.getLogger(__name__) def retry_load_images(image_paths, retry=10, backend="pytorch"): """ This function is to load images with support of retrying for failed load. Args: image_paths (list): paths of images needed to be loaded. retry (int, optional): maximum time of loading retrying. Defaults to 10. backend (str): `pytorch` or `cv2`. Returns: imgs (list): list of loaded images. """ for i in range(retry): imgs = [] for image_path in image_paths: with PathManager.open(image_path, "rb") as f: img_str = np.frombuffer(f.read(), np.uint8) img = cv2.imdecode(img_str, flags=cv2.IMREAD_COLOR) imgs.append(img) if all(img is not None for img in imgs): if backend == "pytorch": imgs = torch.as_tensor(np.stack(imgs)) return imgs else: logger.warn("Reading failed. Will retry.") time.sleep(1.0) if i == retry - 1: raise Exception("Failed to load images {}".format(image_paths)) def get_sequence(center_idx, half_len, sample_rate, num_frames): """ Sample frames among the corresponding clip. Args: center_idx (int): center frame idx for current clip half_len (int): half of the clip length sample_rate (int): sampling rate for sampling frames inside of the clip num_frames (int): number of expected sampled frames Returns: seq (list): list of indexes of sampled frames in this clip. """ seq = list(range(center_idx - half_len, center_idx + half_len, sample_rate)) for seq_idx in range(len(seq)): if seq[seq_idx] < 0: seq[seq_idx] = 0 elif seq[seq_idx] >= num_frames: seq[seq_idx] = num_frames - 1 return seq def pack_pathway_output(cfg, frames): """ Prepare output as a list of tensors. Each tensor corresponding to a unique pathway. Args: frames (tensor): frames of images sampled from the video. The dimension is `channel` x `num frames` x `height` x `width`. Returns: frame_list (list): list of tensors with the dimension of `channel` x `num frames` x `height` x `width`. """ if cfg.DATA.REVERSE_INPUT_CHANNEL: frames = frames[[2, 1, 0], :, :, :] if cfg.MODEL.ARCH in cfg.MODEL.SINGLE_PATHWAY_ARCH: frame_list = [frames] elif cfg.MODEL.ARCH in cfg.MODEL.MULTI_PATHWAY_ARCH: fast_pathway = frames # Perform temporal sampling from the fast pathway. slow_pathway = torch.index_select( frames, 1, torch.linspace( 0, frames.shape[1] - 1, frames.shape[1] // cfg.SLOWFAST.ALPHA ).long(), ) frame_list = [slow_pathway, fast_pathway] else: raise NotImplementedError( "Model arch {} is not in {}".format( cfg.MODEL.ARCH, cfg.MODEL.SINGLE_PATHWAY_ARCH + cfg.MODEL.MULTI_PATHWAY_ARCH, ) ) return frame_list def spatial_sampling( frames, spatial_idx=-1, min_scale=256, max_scale=320, crop_size=224, random_horizontal_flip=True, inverse_uniform_sampling=False, ): """ Perform spatial sampling on the given video frames. If spatial_idx is -1, perform random scale, random crop, and random flip on the given frames. If spatial_idx is 0, 1, or 2, perform spatial uniform sampling with the given spatial_idx. Args: frames (tensor): frames of images sampled from the video. The dimension is `num frames` x `height` x `width` x `channel`. spatial_idx (int): if -1, perform random spatial sampling. If 0, 1, or 2, perform left, center, right crop if width is larger than height, and perform top, center, buttom crop if height is larger than width. min_scale (int): the minimal size of scaling. max_scale (int): the maximal size of scaling. crop_size (int): the size of height and width used to crop the frames. inverse_uniform_sampling (bool): if True, sample uniformly in [1 / max_scale, 1 / min_scale] and take a reciprocal to get the scale. If False, take a uniform sample from [min_scale, max_scale]. Returns: frames (tensor): spatially sampled frames. """ assert spatial_idx in [-1, 0, 1, 2] if spatial_idx == -1: frames, _ = transform.random_short_side_scale_jitter( images=frames, min_size=min_scale, max_size=max_scale, inverse_uniform_sampling=inverse_uniform_sampling, ) frames, _ = transform.random_crop(frames, crop_size) if random_horizontal_flip: frames, _ = transform.horizontal_flip(0.5, frames) else: # The testing is deterministic and no jitter should be performed. # min_scale, max_scale, and crop_size are expect to be the same. #assert len({min_scale, max_scale, crop_size}) == 1 frames, _ = transform.random_short_side_scale_jitter( frames, min_scale, max_scale ) frames, _ = transform.uniform_crop(frames, crop_size, spatial_idx) return frames def spatial_sampling_2crops( frames, spatial_idx=-1, min_scale=256, max_scale=320, crop_size=224, random_horizontal_flip=True, inverse_uniform_sampling=False, ): """ Perform spatial sampling on the given video frames. If spatial_idx is -1, perform random scale, random crop, and random flip on the given frames. If spatial_idx is 0, 1, or 2, perform spatial uniform sampling with the given spatial_idx. Args: frames (tensor): frames of images sampled from the video. The dimension is `num frames` x `height` x `width` x `channel`. spatial_idx (int): if -1, perform random spatial sampling. If 0, 1, or 2, perform left, center, right crop if width is larger than height, and perform top, center, buttom crop if height is larger than width. min_scale (int): the minimal size of scaling. max_scale (int): the maximal size of scaling. crop_size (int): the size of height and width used to crop the frames. inverse_uniform_sampling (bool): if True, sample uniformly in [1 / max_scale, 1 / min_scale] and take a reciprocal to get the scale. If False, take a uniform sample from [min_scale, max_scale]. Returns: frames (tensor): spatially sampled frames. """ assert spatial_idx in [-1, 0, 1, 2] if spatial_idx == -1: frames, _ = transform.random_short_side_scale_jitter( images=frames, min_size=min_scale, max_size=max_scale, inverse_uniform_sampling=inverse_uniform_sampling, ) frames, _ = transform.random_crop(frames, crop_size) if random_horizontal_flip: frames, _ = transform.horizontal_flip(0.5, frames) else: # The testing is deterministic and no jitter should be performed. # min_scale, max_scale, and crop_size are expect to be the same. #assert len({min_scale, max_scale, crop_size}) == 1 frames, _ = transform.random_short_side_scale_jitter( frames, min_scale, max_scale ) frames, _ = transform.uniform_crop_2crops(frames, crop_size, spatial_idx) return frames def as_binary_vector(labels, num_classes): """ Construct binary label vector given a list of label indices. Args: labels (list): The input label list. num_classes (int): Number of classes of the label vector. Returns: labels (numpy array): the resulting binary vector. """ label_arr = np.zeros((num_classes,)) for lbl in set(labels): label_arr[lbl] = 1.0 return label_arr def aggregate_labels(label_list): """ Join a list of label list. Args: labels (list): The input label list. Returns: labels (list): The joint list of all lists in input. """ all_labels = [] for labels in label_list: for l in labels: all_labels.append(l) return list(set(all_labels)) def convert_to_video_level_labels(labels): """ Aggregate annotations from all frames of a video to form video-level labels. Args: labels (list): The input label list. Returns: labels (list): Same as input, but with each label replaced by a video-level one. """ for video_id in range(len(labels)): video_level_labels = aggregate_labels(labels[video_id]) for i in range(len(labels[video_id])): labels[video_id][i] = video_level_labels return labels def load_image_lists(frame_list_file, prefix="", return_list=False): """ Load image paths and labels from a "frame list". Each line of the frame list contains: `original_vido_id video_id frame_id path labels` Args: frame_list_file (string): path to the frame list. prefix (str): the prefix for the path. return_list (bool): if True, return a list. If False, return a dict. Returns: image_paths (list or dict): list of list containing path to each frame. If return_list is False, then return in a dict form. labels (list or dict): list of list containing label of each frame. If return_list is False, then return in a dict form. """ image_paths = defaultdict(list) labels = defaultdict(list) with PathManager.open(frame_list_file, "r") as f: assert f.readline().startswith("original_vido_id") for line in f: row = line.split() # original_vido_id video_id frame_id path labels assert len(row) == 5 video_name = row[0] if prefix == "": path = row[3] else: path = os.path.join(prefix, row[3]) image_paths[video_name].append(path) frame_labels = row[-1].replace('"', "") if frame_labels != "": labels[video_name].append( [int(x) for x in frame_labels.split(",")] ) else: labels[video_name].append([]) if return_list: keys = image_paths.keys() image_paths = [image_paths[key] for key in keys] labels = [labels[key] for key in keys] return image_paths, labels return dict(image_paths), dict(labels) def tensor_normalize(tensor, mean, std): """ Normalize a given tensor by subtracting the mean and dividing the std. Args: tensor (tensor): tensor to normalize. mean (tensor or list): mean value to subtract. std (tensor or list): std to divide. """ if tensor.dtype == torch.uint8: tensor = tensor.float() tensor = tensor / 255.0 if type(mean) == list: mean = torch.tensor(mean) if type(std) == list: std = torch.tensor(std) tensor = tensor - mean tensor = tensor / std return tensor def get_random_sampling_rate(long_cycle_sampling_rate, sampling_rate): """ When multigrid training uses a fewer number of frames, we randomly increase the sampling rate so that some clips cover the original span. """ if long_cycle_sampling_rate > 0: assert long_cycle_sampling_rate >= sampling_rate return random.randint(sampling_rate, long_cycle_sampling_rate) else: return sampling_rate def revert_tensor_normalize(tensor, mean, std): """ Revert normalization for a given tensor by multiplying by the std and adding the mean. Args: tensor (tensor): tensor to revert normalization. mean (tensor or list): mean value to add. std (tensor or list): std to multiply. """ if type(mean) == list: mean = torch.tensor(mean) if type(std) == list: std = torch.tensor(std) tensor = tensor * std tensor = tensor + mean return tensor def create_sampler(dataset, shuffle, cfg): """ Create sampler for the given dataset. Args: dataset (torch.utils.data.Dataset): the given dataset. shuffle (bool): set to ``True`` to have the data reshuffled at every epoch. cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py Returns: sampler (Sampler): the created sampler. """ sampler = DistributedSampler(dataset) if cfg.NUM_GPUS > 1 else None return sampler def loader_worker_init_fn(dataset): """ Create init function passed to pytorch data loader. Args: dataset (torch.utils.data.Dataset): the given dataset. """ return None