# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright 2020 Ross Wightman # Modified Model definition import torch import torch.nn as nn from functools import partial import math import warnings import torch.nn.functional as F import numpy as np from timesformer.models.vit_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timesformer.models.helpers import load_pretrained from timesformer.models.vit_utils import DropPath, to_2tuple, trunc_normal_ # from timesformer.models.build import MODEL_REGISTRY from torch import einsum from einops import rearrange, reduce, repeat import torchvision def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head', **kwargs } default_cfgs = { 'timesformer_vit_base_patch16_224': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), ), } class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., with_qkv=True): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.with_qkv = with_qkv if self.with_qkv: self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.attn_drop = nn.Dropout(attn_drop) def forward(self, x): B, N, C = x.shape if self.with_qkv: qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] else: qkv = x.reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) q, k, v = qkv, qkv, qkv attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) if self.with_qkv: x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0.1, act_layer=nn.GELU, norm_layer=nn.LayerNorm, attention_type='divided_space_time'): super().__init__() self.attention_type = attention_type assert(attention_type in ['divided_space_time', 'space_only','joint_space_time']) self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) ## Temporal Attention Parameters if self.attention_type == 'divided_space_time': self.temporal_norm1 = norm_layer(dim) self.temporal_attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.temporal_fc = nn.Linear(dim, dim) ## drop path self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x, B, T, W): num_spatial_tokens = (x.size(1) - 1) // T H = num_spatial_tokens // W if self.attention_type in ['space_only', 'joint_space_time']: x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x elif self.attention_type == 'divided_space_time': ## Temporal xt = x[:,1:,:] xt = rearrange(xt, 'b (h w t) m -> (b h w) t m',b=B,h=H,w=W,t=T) res_temporal = self.drop_path(self.temporal_attn(self.temporal_norm1(xt))) res_temporal = rearrange(res_temporal, '(b h w) t m -> b (h w t) m',b=B,h=H,w=W,t=T) res_temporal = self.temporal_fc(res_temporal) xt = x[:,1:,:] + res_temporal ## Spatial init_cls_token = x[:,0,:].unsqueeze(1) cls_token = init_cls_token.repeat(1, T, 1) cls_token = rearrange(cls_token, 'b t m -> (b t) m',b=B,t=T).unsqueeze(1) xs = xt xs = rearrange(xs, 'b (h w t) m -> (b t) (h w) m',b=B,h=H,w=W,t=T) xs = torch.cat((cls_token, xs), 1) res_spatial = self.drop_path(self.attn(self.norm1(xs))) ### Taking care of CLS token cls_token = res_spatial[:,0,:] cls_token = rearrange(cls_token, '(b t) m -> b t m',b=B,t=T) cls_token = torch.mean(cls_token,1,True) ## averaging for every frame res_spatial = res_spatial[:,1:,:] res_spatial = rearrange(res_spatial, '(b t) (h w) m -> b (h w t) m',b=B,h=H,w=W,t=T) res = res_spatial x = xt ## Mlp x = torch.cat((init_cls_token, x), 1) + torch.cat((cls_token, res), 1) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): B, C, T, H, W = x.shape x = rearrange(x, 'b c t h w -> (b t) c h w') x = self.proj(x) W = x.size(-1) x = x.flatten(2).transpose(1, 2) return x, T, W class VisionTransformer(nn.Module): """ Vision Transformere """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, hybrid_backbone=None, norm_layer=nn.LayerNorm, num_frames=8, attention_type='divided_space_time', dropout=0., return_hidden_state=False): super().__init__() self.attention_type = attention_type self.depth = depth self.dropout = nn.Dropout(dropout) self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches ## Positional Embeddings self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches+1, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) if self.attention_type != 'space_only': self.time_embed = nn.Parameter(torch.zeros(1, num_frames, embed_dim)) self.time_drop = nn.Dropout(p=drop_rate) ## Attention Blocks dpr = [x.item() for x in torch.linspace(0, drop_path_rate, self.depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, attention_type=self.attention_type) for i in range(self.depth)]) self.norm = norm_layer(embed_dim) # Classifier head self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) ## initialization of temporal attention weights if self.attention_type == 'divided_space_time': i = 0 for m in self.blocks.modules(): m_str = str(m) if 'Block' in m_str: if i > 0: nn.init.constant_(m.temporal_fc.weight, 0) nn.init.constant_(m.temporal_fc.bias, 0) i += 1 print("Load custom timesformer") self.return_hidden_state = return_hidden_state def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token', 'time_embed'} def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x, attention_type=None): all_hidden_states = () if self.return_hidden_state else None B = x.shape[0] x, T, W = self.patch_embed(x) cls_tokens = self.cls_token.expand(x.size(0), -1, -1) x = torch.cat((cls_tokens, x), dim=1) ## resizing the positional embeddings in case they don't match the input at inference if x.size(1) != self.pos_embed.size(1): pos_embed = self.pos_embed cls_pos_embed = pos_embed[0,0,:].unsqueeze(0).unsqueeze(1) other_pos_embed = pos_embed[0,1:,:].unsqueeze(0).transpose(1, 2) P = int(other_pos_embed.size(2) ** 0.5) H = x.size(1) // W other_pos_embed = other_pos_embed.reshape(1, x.size(2), P, P) new_pos_embed = F.interpolate(other_pos_embed, size=(H, W), mode='nearest') new_pos_embed = new_pos_embed.flatten(2) new_pos_embed = new_pos_embed.transpose(1, 2) new_pos_embed = torch.cat((cls_pos_embed, new_pos_embed), 1) x = x + new_pos_embed else: x = x + self.pos_embed x = self.pos_drop(x) if attention_type is None: attention_type = self.attention_type ## Time Embeddings if attention_type != 'space_only': cls_tokens = x[:B, 0, :].unsqueeze(1) x = x[:,1:] x = rearrange(x, '(b t) n m -> (b n) t m',b=B,t=T) ## Resizing time embeddings in case they don't match if T != self.time_embed.size(1): time_embed = self.time_embed.transpose(1, 2) new_time_embed = F.interpolate(time_embed, size=(T), mode='nearest') new_time_embed = new_time_embed.transpose(1, 2) x = x + new_time_embed else: x = x + self.time_embed x = self.time_drop(x) x = rearrange(x, '(b n) t m -> b (n t) m',b=B,t=T) x = torch.cat((cls_tokens, x), dim=1) ## Attention blocks for blk in self.blocks: x = blk(x, B, T, W) if self.return_hidden_state: all_hidden_states = all_hidden_states + (self.norm(x),) ### Predictions for space-only baseline if attention_type == 'space_only': x = rearrange(x, '(b t) n m -> b t n m',b=B,t=T) x = torch.mean(x, 1) # averaging predictions for every frame x = self.norm(x) if self.return_hidden_state: return x, all_hidden_states else: return x def forward(self, x, attention_type=None): x = self.forward_features(x, attention_type=attention_type) return x def _conv_filter(state_dict, patch_size=16): """ convert patch embedding weight from manual patchify + linear proj to conv""" out_dict = {} for k, v in state_dict.items(): if 'patch_embed.proj.weight' in k: if v.shape[-1] != patch_size: patch_size = v.shape[-1] v = v.reshape((v.shape[0], 3, patch_size, patch_size)) out_dict[k] = v return out_dict # @MODEL_REGISTRY.register() class timesformer_vit_base_patch16_224(nn.Module): def __init__(self, cfg, **kwargs): super(timesformer_vit_base_patch16_224, self).__init__() self.pretrained=True patch_size = 16 self.model = VisionTransformer(img_size=cfg.DATA.TRAIN_CROP_SIZE, num_classes=cfg.MODEL.NUM_CLASSES, patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, num_frames=cfg.DATA.NUM_FRAMES, attention_type=cfg.TIMESFORMER.ATTENTION_TYPE, **kwargs) self.attention_type = cfg.TIMESFORMER.ATTENTION_TYPE self.model.default_cfg = default_cfgs['timesformer_vit_base_patch16_224'] self.num_patches = (cfg.DATA.TRAIN_CROP_SIZE // patch_size) * (cfg.DATA.TRAIN_CROP_SIZE // patch_size) pretrained_model=cfg.TIMESFORMER.PRETRAINED_MODEL if self.pretrained: load_pretrained(self.model, num_classes=self.model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=_conv_filter, img_size=cfg.DATA.TRAIN_CROP_SIZE, num_patches=self.num_patches, attention_type=self.attention_type, pretrained_model=pretrained_model) def forward(self, x): x = self.model(x) return x # @MODEL_REGISTRY.register() class TimeSformer(nn.Module): def __init__(self, img_size=224, patch_size=16, num_classes=400, num_frames=8, attention_type='divided_space_time', embed_dim=768, pretrained_model='', audio_as_image=True, space_only_for_images=False, **kwargs): super(TimeSformer, self).__init__() self.pretrained=True self.model = VisionTransformer(img_size=img_size, num_classes=num_classes, patch_size=patch_size, embed_dim=embed_dim, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, num_frames=num_frames, attention_type=attention_type, **kwargs) self.num_frames = num_frames self.embed_dim = embed_dim self.attention_type = attention_type self.model.default_cfg = default_cfgs['timesformer_vit_base_patch'+str(patch_size)+'_224'] self.num_patches = (img_size // patch_size) * (img_size // patch_size) self.img_size = img_size self.audio_as_image = audio_as_image self.space_only_for_images = space_only_for_images if self.pretrained: load_pretrained(self.model, num_classes=self.model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=_conv_filter, img_size=img_size, num_frames=num_frames, num_patches=self.num_patches, attention_type=self.attention_type, pretrained_model=pretrained_model) def forward(self, x, external_features=None): if x.ndim == 4: # image as input if not self.space_only_for_images: x = x.unsqueeze(2).expand(-1, -1, self.num_frames, -1, -1) # B, C, f, H, W else: x = x.unsqueeze(2) # B, C, f, H, W if x.ndim == 3: # image as input B, H, W = x.shape if self.audio_as_image: x = x.unsqueeze(1).expand(-1, 3, -1, -1) # add C channel x = torchvision.transforms.functional.resize(x, (self.img_size, self.img_size)) if not self.space_only_for_images: x = x.unsqueeze(2).expand(-1, -1, self.num_frames, -1, -1) # B, C, f, H, W else: x = x.unsqueeze(2) # B, C, f, H, W else: if H != W: # audio (1024, 128) another option is to make a square image if H > W: w = H/self.num_frames # if w > W: # w = w/2 a = w - W # overlap a < 0 x = x.unfold(1, W, int(W+a)) # from mel to square frames x = x.unsqueeze(1).expand(-1, 3, -1, -1, -1) # add C channel x = [torchvision.transforms.functional.resize(x[:, :, i, :, :], (self.img_size, self.img_size)).unsqueeze(2) for i in range(self.num_frames)] x = torch.cat(x, dim=2) x = (x - x.min()) / (x.max() - x.min()) # does not help # print(x.shape) if x.shape[-3] == 1 and self.space_only_for_images: # space only for images attention_type = 'space_only' else: attention_type = None x = self.model(x, attention_type=attention_type) return x