import argparse
import os
import ruamel_yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path

import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
 

from models.epalm import ePALM
from models.utils import freeze_whole_model, unfreeze_parameters, print_trainable_params_percentage

from models.utils import filter_state, filter_msg, exclude_list



from transformers import AutoTokenizer


import utils


from dataset.vqa import get_loader 

from scheduler import create_scheduler
from optim import create_optimizer
 

from models.gptj_neo import get_tokenizer

from tqdm import tqdm 



import re 

def train(model, data_loader, optimizer, tokenizer, epoch, warmup_steps, device, scheduler, config):
    model.train()  
    

    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
    metric_logger.add_meter('loss', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))

    config_optim = utils.AttrDict(config['optimizer'])
    prompt_lr = config_optim.prompt_lr if hasattr(config_optim, 'prompt_lr') else None
    connector_lr = config_optim.connector_lr if hasattr(config_optim, 'connector_lr') else None
    vis_lr = config_optim.vis_lr if hasattr(config_optim, 'vis_lr') else None
    text_lr = config_optim.text_lr if hasattr(config_optim, 'text_lr') else None

    print(vis_lr, text_lr, connector_lr, len(optimizer.param_groups))
    if prompt_lr is not None:
        metric_logger.add_meter('prompt_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))



    header = 'Train Epoch: [{}]'.format(epoch)
    print_freq = 50    
    step_size = 100
    warmup_iterations = warmup_steps*step_size  
    lm_loss_weight = config.get('lm_loss_weight', 1)
    special_answer_token = config.get('special_answer_token', None)

    special_eo_answer_token = config.get('special_eo_answer_token', None)



    eos_token = tokenizer.eos_token if special_eo_answer_token is None else special_eo_answer_token

    for i, batch in enumerate(metric_logger.log_every(data_loader, print_freq, header)):


        image = batch['images'].to(device,non_blocking=True)

        question = batch['sent']

        answer = batch['answers']

        
        questions_answers = []


        if special_answer_token is not None:
            questions_answers += [question[i] + "?" + special_answer_token + answer[i].replace('[SEP]','') + eos_token for i in range(len(question))]  
        else:
            questions_answers += [question[i] + "</s>" + answer[i].replace('[SEP]','') +  eos_token for i in range(len(question))]  

        questions_answers_input = tokenizer(questions_answers, padding='longest', return_tensors="pt").to(device) 
        answer_targets = questions_answers_input.input_ids.masked_fill(questions_answers_input.input_ids == tokenizer.pad_token_id, -100)


        

        


        answer_output = model(image=image, 
                              text=questions_answers_input, 
                              labels = answer_targets,
                              return_dict = True,   
                              mode='train',
                              reduction='none',
                             )      
        
           

        loss = answer_output.loss         
        loss = loss.sum()/image.size(0)
        loss = loss*lm_loss_weight
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()    
        
        metric_logger.update(loss=loss.item())
        metric_logger.update(lr=optimizer.param_groups[0]["lr"])
        if prompt_lr is not None:
            metric_logger.update(prompt_lr=optimizer.param_groups[1]["lr"])

        if i % print_freq == 0:
            lrs = [g["lr"] for g in optimizer.param_groups]
            print(lrs)

        if epoch==0 and i%step_size==0 and i<=warmup_iterations: 
            if scheduler is not None:
                scheduler.step(i//step_size) 
    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger.global_avg())     
    return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()} 



@torch.no_grad()
def predict(model, loader, tokenizer, device, dump_path=None, verbose=False, distributed=False, special_answer_token=None, special_eo_answer_token=None):
    model.eval()
    eos_token = tokenizer.eos_token if special_eo_answer_token is None else special_eo_answer_token
    pad_token = tokenizer.pad_token
    print('pad_token', pad_token)

    with torch.no_grad():
        quesid2ans = {}
        if verbose:
            pbar = tqdm(total=len(loader), ncols=120, desc="Prediction")
        for i, batch in enumerate(loader):


            image = batch['images'].to(device,non_blocking=True)

            question = batch['sent']

            question_id = batch['question_ids']

            if special_answer_token is not None:
                question = [q+'?'+special_answer_token for q in question]
            else:
                question = [q+eos_token for q in question]

            question_input = tokenizer(question, padding='longest', return_tensors="pt").to(device) 

            out = model(image=image, text=question_input, mode='generate', return_dict=True, max_length=30, do_sample=True)
            
            


            for ques_id, o in zip(question_id, out):
                o_list = o.tolist()
                try:
                    if special_answer_token is not None:
                        response = tokenizer.decode(o_list).split(special_answer_token)[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
                    else:
                        response = tokenizer.decode(o_list).split('</s>')[2].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
                except TypeError:
                    print(o_list)
                    response = ' '

                ques_id = int(ques_id)          
                quesid2ans[ques_id] = response  



            if verbose:
                pbar.update(1)
        if verbose:
            pbar.close()

    if distributed:
        dist.barrier()

    qid2ans_list = utils.all_gather(quesid2ans)
    if verbose:
        quesid2ans = {}
        for qid2ans in qid2ans_list:
            for k, v in qid2ans.items():
                quesid2ans[k] = v

        if dump_path is not None:
            evaluator = loader.evaluator
            evaluator.dump_result(quesid2ans, dump_path)

    return quesid2ans


  

def evaluate(model, data_loader, tokenizer, device, 
        distributed=False, special_answer_token=None, special_eo_answer_token=None):
    verbose = utils.is_main_process()


    quesid2ans = predict(model, data_loader, tokenizer, device, verbose=verbose, 
        distributed=distributed, special_answer_token=special_answer_token, special_eo_answer_token=special_eo_answer_token)

    evaluator = data_loader.evaluator
    score_dict = evaluator.evaluate(quesid2ans)


    acc_dict = evaluator.evaluate_raw(quesid2ans)
    topk_score = evaluator.evaluate(quesid2ans)
    acc_dict['topk_score'] = topk_score
    return acc_dict








def main(args, config):
    os.environ['TORCH_HOME'] = os.environ['XDG_CACHE_HOME']+'/torch'
    utils.init_distributed_mode(args)    
    
    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)
    cudnn.benchmark = True
    
    start_epoch = 0
    max_epoch = config['schedular']['epochs']
    warmup_steps = config['schedular']['warmup_epochs']
    
    print(args)
    #### Dataset #### 
    
    print("Creating dataset")


    if args.distributed:
        num_tasks = utils.get_world_size()
        global_rank = utils.get_rank()     
    else:
        num_tasks = None
        global_rank = None
    
    num_workers = config.get('num_workers', 4)
    train_topk = config.get('train_topk', -1)
    valid_topk = config.get('valid_topk', -1)
    data_dir = args.data_dir

    args.image_size = config.get('image_res', 224)
    args.use_data_augmentation = True 

    black_image = config.get('black_image', False)

    print("black image:", black_image)
    
    train_split = config.get('train_split', 'karpathy_train') 
    val_split = config.get('val_split', 'karpathy_val')
    test_split = config.get('test_split', 'karpathy_test')

    balanced_data = config.get('balanced_data', False)

    seed = config.get('seed', 42)

    train_loader = get_loader(
        args,
        split=train_split, mode='train', batch_size=config['batch_size_train'],
        distributed=args.distributed,
        workers=num_workers,
        topk=train_topk,
        data_dir=data_dir,
        local_rank=global_rank, world_size=num_tasks, 
        verbose=True, black_image=black_image,balanced_data=balanced_data,seed=seed,
    )

    args.raw_label = False
    print('# len train loader:', len(train_loader))
    print(f'Building val loader')
    val_loader = get_loader(
        args,
        split=val_split, mode='val', batch_size=config['batch_size_test'],
        distributed=args.distributed, 
        workers=4,
        topk=valid_topk,data_dir=data_dir,
        local_rank=global_rank, world_size=num_tasks, 
        verbose=True, black_image=black_image, seed=seed
    )
    print('# len val loader:', len(val_loader))

    print(f'Building test loader')
    test_loader = get_loader(
        args,
        split=test_split, mode='val', batch_size=config['batch_size_test'],
        distributed=args.distributed, 
        workers=4,
        topk=-1,data_dir=data_dir,
        local_rank=global_rank, world_size=num_tasks, 
        verbose=True, black_image=black_image, seed=seed
    )


    print('# len test loader:', len(test_loader))



    #### Model #### 
    print("Creating model")
    
    start_layer_idx = config.get('start_layer_idx', 0)
    end_layer_idx = config.get('end_layer_idx', 0)

    
    vision_model_name = config.get('vision_model_name', args.vision_model)

    model = ePALM(opt_model_name = args.text_model, 
                   vision_model_name = vision_model_name, 
                   use_vis_prefix = True, 
                   start_layer_idx = start_layer_idx, 
                   end_layer_idx = end_layer_idx, 
                   return_hidden_state_vision = True, 
                   config=config,
    )
    
        
      
    
    # tokenizer

    tokenizer_name = config.get('tokenizer_name', args.text_model)
        
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=False, local_files_only=True)
   
    

    special_answer_token = config.get('special_answer_token', None)
    special_eo_answer_token = config.get('special_eo_answer_token', None)


    if special_answer_token is not None:
        special_tokens_dict = {'additional_special_tokens': [special_answer_token]}
        if special_eo_answer_token is not None:
            special_tokens_dict['additional_special_tokens'] += [special_eo_answer_token]

        tokenizer.add_special_tokens(special_tokens_dict)
        print("Adding special token:", special_tokens_dict)
        print(tokenizer)

    arg_opt = utils.AttrDict(config['optimizer'])
    optimizer = create_optimizer(arg_opt, model, config=config['optimizer'])

    if hasattr(arg_opt, 'prompt_lr') and arg_opt.prompt_lr is not None:
        print('\tInitial other params params lr: %f' % optimizer.param_groups[0]['lr'])
        print('\tInitial prompt params lr: %f' % optimizer.param_groups[1]['lr'])

    arg_sche = utils.AttrDict(config['schedular'])
    lr_scheduler, _ = create_scheduler(arg_sche, optimizer)          
 
    best_valid = 0.
    best_epoch = 0

    if args.checkpoint:    
        checkpoint = torch.load(args.checkpoint, map_location='cpu') 
        state_dict = checkpoint['model']


        msg = model.load_state_dict(state_dict,strict=False)  
        msg = filter_msg(msg, exclude_list)
        print('load checkpoint from %s'%args.checkpoint)
        print(msg)  

        if args.resume:
            model = model.to(device) 
            optimizer.load_state_dict(checkpoint['optimizer'])
            lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
            start_epoch = checkpoint['epoch']+1  
            print(checkpoint.keys())
            if 'best_valid' in checkpoint:
                best_valid = checkpoint['best_valid'] 
                best_epoch = checkpoint['best_epoch'] 
                print("load best valid {} at epoch {}".format(best_valid, best_epoch))

        


    
    freeze_whole_model(model)
    unfreeze_parameters(model, config)

    model = model.to(device) 

    print_trainable_params_percentage(model)


    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module    
    
    
    print("Start training")
    start_time = time.time()



    for epoch in range(start_epoch, max_epoch):
        if epoch>0:
            if lr_scheduler is not None:
                lr_scheduler.step(epoch+warmup_steps)  
        
        if not args.evaluate:
            if args.distributed:
                train_loader.sampler.set_epoch(epoch)

            train_stats = train(model, train_loader, optimizer, tokenizer, epoch, warmup_steps, device, lr_scheduler, config)  

        if args.evaluate:
            break

        score_dict = evaluate(model, val_loader, tokenizer, device, distributed=args.distributed, 
            special_answer_token=special_answer_token, special_eo_answer_token=special_eo_answer_token)
        print(score_dict)
        if utils.is_main_process():               
            log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
                         'epoch': epoch,
                        }                
            with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
                f.write(json.dumps(log_stats) + "\n")                        
                     
            if lr_scheduler is None:
                lr_scheduler_state_dict = {}
            else:
                lr_scheduler_state_dict = lr_scheduler.state_dict()    
            
            save_obj = {
                'model': filter_state(model_without_ddp.state_dict(), exclude_list),
                'optimizer': optimizer.state_dict(),
                'lr_scheduler': lr_scheduler_state_dict,
                'config': config,
                'epoch': epoch,
                'best_valid': score_dict['overall'],
                'best_epoch': epoch,
            }

            if args.save_best:
                valid_score = score_dict['topk_score'] * 100.
                valid_score_raw = score_dict['overall']
                if valid_score_raw > best_valid or epoch == 0:
                    best_valid = valid_score_raw
                    best_epoch = epoch
                    
                    print("save best epoch:", best_epoch)
                    torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth'))  

            torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_last.pth'))                  

        dist.barrier()   
    
    if lr_scheduler is None:
        lr_scheduler_state_dict = {}
    else:
        lr_scheduler_state_dict = lr_scheduler.state_dict()    
    save_obj = {
        'model': filter_state(model_without_ddp.state_dict(), exclude_list),
        'optimizer': optimizer.state_dict(),
        'lr_scheduler': lr_scheduler_state_dict,
        'config': config,
        'epoch': epoch,
        'best_valid': best_valid,
        'best_epoch': best_epoch,
    }
    torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_last.pth'))  

    verbose = utils.is_main_process()

    
    ### test best model
    if not args.evaluate:
        checkpoint = torch.load(os.path.join(args.output_dir, 'checkpoint_best.pth'), map_location='cpu') 
        state_dict = checkpoint['model']   
        msg = model.module.load_state_dict(state_dict,strict=False)  
        msg = filter_msg(msg, exclude_list)
        print('load checkpoint for test from', args.output_dir, 'checkpoint_best.pth')
        print(msg)

    quesid2ans = predict(model, test_loader, tokenizer, device, verbose=verbose, 
        distributed=args.distributed, special_answer_token=special_answer_token, special_eo_answer_token=special_eo_answer_token)

    evaluator = test_loader.evaluator
    score_dict = evaluator.evaluate(quesid2ans)


    acc_dict_all = evaluator.evaluate_raw(quesid2ans)
    acc_dict_answerable = evaluator.evaluate_raw(quesid2ans, is_topk_optimal=True)
    acc_dict_unanswerable = evaluator.evaluate_raw(quesid2ans, is_topk_optimal=False)

    wandb_log_dict = {}
    wandb_log_dict['Test/overall'] = acc_dict_all['overall']
    wandb_log_dict['Test/topk_optimal'] = acc_dict_answerable['overall']
    wandb_log_dict['Test/topk_not_optimal'] = acc_dict_unanswerable['overall']

    for qtype, score in acc_dict_all['perQuestionType'].items():
        wandb_log_dict[f'Test_Qtypes/{qtype}'] = score
    for atype, score in acc_dict_all['perAnswerType'].items():
        if atype == 'yes/no':
            atype = 'yes_no'
        wandb_log_dict[f'Test_Atypes/{atype}'] = score

    print(wandb_log_dict)
    print('best epoch:', best_epoch)


    if args.distributed:
        dist.barrier()
        exit()


                     
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str)) 
    
            

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', default='./configs/VQA.yaml') 
    parser.add_argument('--checkpoint', default='') 
    parser.add_argument('--output_dir', default='output/vqa')
    parser.add_argument('--evaluate', action='store_true')    
    parser.add_argument('--text_model', default='facebook/opt-350m')
    parser.add_argument('--vision_model', default='vit_base_patch16_224')
    parser.add_argument('--device', default='cuda')
    parser.add_argument('--seed', default=42, type=int)
    parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')    
    parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
    parser.add_argument('--distributed', default=True, type=bool)
    
    parser.add_argument('--data_dir', default='/data/mshukor/data')   
    parser.add_argument('--resume', action='store_true')    

    parser.add_argument('--save_best', action='store_true') 




    args = parser.parse_args()

    config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)

    args.result_dir = os.path.join(args.output_dir, 'result')

    Path(args.output_dir).mkdir(parents=True, exist_ok=True)
    Path(args.result_dir).mkdir(parents=True, exist_ok=True)
        
    yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))    
    
    main(args, config)