import os os.system('cd TimeSformer;' 'pip install .; cd ..') os.system('ls -l') os.system('pwd') import os, sys sys.path.append("/home/user/app/TimeSformer/") import timesformer import torch from torchvision import transforms from transformers import AutoTokenizer from PIL import Image import json import os from torchvision import transforms from models.epalm import ePALM import os from transformers import AutoTokenizer # import ruamel_yaml as yaml from ruamel.yaml import YAML import torch import gradio as gr yaml=YAML(typ='safe') use_cuda = torch.cuda.is_available() device = torch.device('cuda') if use_cuda else torch.device('cpu') device_type = 'cuda' if use_cuda else 'cpu' ## Load model config = 'configs/image/ePALM_caption.yaml' # config = yaml.load(open(config, 'r'), Loader=yaml.Loader) config = yaml.load(open(config, 'r')) text_model = 'facebook/opt-2.7b' vision_model_name = 'vit_base_patch16_224' # text_model = 'facebook/opt-6.7b' # vision_model_name = 'vit_large_patch16_224' start_layer_idx = 19 end_layer_idx = 31 low_cpu = True model = ePALM(opt_model_name=text_model, vision_model_name=vision_model_name, use_vis_prefix=True, start_layer_idx=start_layer_idx, end_layer_idx=end_layer_idx, return_hidden_state_vision=True, config=config, low_cpu=low_cpu ) print("Model Built") model.to(device) checkpoint_path = 'checkpoints/float32/ePALM_caption/checkpoint_best.pth' # checkpoint_path = '/data/mshukor/logs/eplam/models/accelerate/ePALM_pt_L_acc_caption/checkpoint_best.pth' checkpoint = torch.load(checkpoint_path, map_location='cpu') state_dict = checkpoint['model'] msg = model.load_state_dict(state_dict,strict=False) ## Load tokenizer tokenizer = AutoTokenizer.from_pretrained(text_model, use_fast=False) eos_token = tokenizer.eos_token pad_token = tokenizer.pad_token image_size = 224 normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) transform = transforms.Compose([ transforms.Resize((image_size,image_size),interpolation=Image.BICUBIC), transforms.ToTensor(), normalize, ]) do_sample=False num_beams=3 max_length=30 model.bfloat16() def inference(image, audio, video, task_type, instruction): if task_type == 'Image Captioning': text = [''] text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device) else: raise NotImplemented if "Video" in task_type: pass elif "Audio" in task_type: pass else: image = transform(image) image = image.to(device,non_blocking=True).unsqueeze(0) with torch.autocast(device_type=device_type, dtype=torch.bfloat16, enabled=True): out = model(image=image, text=text_input, mode='generate', return_dict=True, max_length=max_length, do_sample=do_sample, num_beams=num_beams) out_decode = [] for i, o in enumerate(out): res = tokenizer.decode(o) response = res.split('')[1].replace(pad_token, '').replace('', '').replace(eos_token, '') # skip_special_tokens=True return response inputs = [gr.inputs.Image(type='pil'), gr.Audio(source="upload", type="filepath"), gr.Video(source="upload", type="filepath"), gr.inputs.Radio(choices=['Image Captioning', 'Video Captioning', 'Audio Captioning', "Visual Question Answering", "Visual Grounding", "General", "General Video"], type="value", default="Image Captioning", label="Task"), gr.inputs.Textbox(lines=1, label="Instruction")] outputs = ['text'] examples = [ ['examples/images/soccer.jpg', None, None, 'Image Captioning', None], ['examples/images/ski.jpg', None, None, 'Visual Question Answering', 'what does the woman wearing black do?'], ['examples/images/banana.jpg', None, None, 'Visual Grounding', 'the detached banana'], ['examples/images/skateboard.jpg', None, None, 'General', 'which region does the text " a yellow bird " describe?'], ['examples/images/baseball.jpg', None, None, 'General', 'what color is the left car?'], [None, None, 'examples/videos/video7014.mp4', 'Video Captioning', None], [None, None, 'examples/videos/video7017.mp4', 'Video Captioning', None], [None, None, 'examples/videos/video7019.mp4', 'Video Captioning', None], [None, None, 'examples/videos/video7021.mp4', 'Video Captioning', None], [None, None, 'examples/videos/video7021.mp4', 'General Video', "What is this sport?"], [None, 'examples/audios/6cS0FsUM-cQ.wav', None, 'Audio Captioning', None], [None, 'examples/audios/AJtNitYMa1I.wav', None, 'Audio Captioning', None], ] title = "eP-ALM" description = "Gradio Demo for eP-ALM: " article = "
" io = gr.Interface(fn=inference, inputs=inputs, outputs=outputs, title=title, description=description, article=article, examples=examples, cache_examples=False) io.launch()