import os os.system('cd TimeSformer;' 'pip install .; cd ..') os.system('ls -l') os.system('pwd') import os, sys sys.path.append("/home/user/app/TimeSformer/") import timesformer import torch from torchvision import transforms from transformers import AutoTokenizer from PIL import Image import json import os from torchvision import transforms from models.epalm import ePALM import os from transformers import AutoTokenizer # import ruamel_yaml as yaml from ruamel.yaml import YAML import torch import gradio as gr import torchaudio yaml=YAML(typ='safe') use_cuda = torch.cuda.is_available() device = torch.device('cuda') if use_cuda else torch.device('cpu') device_type = 'cuda' if use_cuda else 'cpu' ## Load model ### Captioning config = 'configs/image/ePALM_caption.yaml' # config = yaml.load(open(config, 'r'), Loader=yaml.Loader) config = yaml.load(open(config, 'r')) text_model = 'facebook/opt-2.7b' vision_model_name = 'vit_base_patch16_224' # text_model = 'facebook/opt-6.7b' # vision_model_name = 'vit_large_patch16_224' start_layer_idx = 19 end_layer_idx = 31 low_cpu = True model_caption = ePALM(opt_model_name=text_model, vision_model_name=vision_model_name, use_vis_prefix=True, start_layer_idx=start_layer_idx, end_layer_idx=end_layer_idx, return_hidden_state_vision=True, config=config, low_cpu=low_cpu ) print("Model Built") model_caption.to(device) checkpoint_path = 'checkpoints/float32/ePALM_caption/checkpoint_best.pth' # checkpoint_path = '/data/mshukor/logs/eplam/models/accelerate/ePALM_pt_L_acc_caption/checkpoint_best.pth' checkpoint = torch.load(checkpoint_path, map_location='cpu') state_dict = checkpoint['model'] msg = model_caption.load_state_dict(state_dict,strict=False) model_caption.bfloat16() # ###### VQA # config = 'configs/image/ePALM_vqa.yaml' # config = yaml.load(open(config, 'r')) # start_layer_idx = 19 # end_layer_idx = 31 # low_cpu = True # model_vqa = ePALM(opt_model_name=text_model, # vision_model_name=vision_model_name, # use_vis_prefix=True, # start_layer_idx=start_layer_idx, # end_layer_idx=end_layer_idx, # return_hidden_state_vision=True, # config=config, # low_cpu=low_cpu # ) # print("Model Built") # model_vqa.to(device) checkpoint_path = 'checkpoints/float32/ePALM_vqa/checkpoint_best.pth' checkpoint = torch.load(checkpoint_path, map_location='cpu') state_dict_vqa = checkpoint['model'] # msg = model_vqa.load_state_dict(state_dict,strict=False) # model_vqa.bfloat16() # Video Captioning checkpoint_path = 'checkpoints/float32/ePALM_video_caption_msrvtt/checkpoint_best.pth' # checkpoint_path = '/data/mshukor/logs/eplam/models/accelerate/ePALM_pt_L_acc_caption/checkpoint_best.pth' checkpoint = torch.load(checkpoint_path, map_location='cpu') state_dict_video_caption = checkpoint['model'] # Video QA checkpoint_path = 'checkpoints/float32/ePALM_video_qa_msrvtt/checkpoint_best.pth' # checkpoint_path = '/data/mshukor/logs/eplam/models/accelerate/ePALM_pt_L_acc_caption/checkpoint_best.pth' checkpoint = torch.load(checkpoint_path, map_location='cpu') state_dict_video_qa = checkpoint['model'] # Audio Captioning checkpoint_path = 'checkpoints/float32/ePALM_audio_caption/checkpoint_best.pth' # checkpoint_path = '/data/mshukor/logs/eplam/models/accelerate/ePALM_pt_L_acc_caption/checkpoint_best.pth' checkpoint = torch.load(checkpoint_path, map_location='cpu') state_dict_audio_caption = checkpoint['model'] ## Load tokenizer tokenizer = AutoTokenizer.from_pretrained(text_model, use_fast=False) eos_token = tokenizer.eos_token pad_token = tokenizer.pad_token special_answer_token = '' special_tokens_dict = {'additional_special_tokens': [special_answer_token]} tokenizer.add_special_tokens(special_tokens_dict) image_size = 224 normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) transform = transforms.Compose([ transforms.Resize((image_size,image_size),interpolation=Image.BICUBIC), transforms.ToTensor(), normalize, ]) type_transform = transforms.Lambda(lambda x: x.float().div(255.0)) test_transform = transforms.Compose([ transforms.Resize((image_size,image_size),interpolation=Image.BICUBIC), type_transform, normalize, ]) from dataset.video_utils import VIDEO_READER_FUNCS video_reader = VIDEO_READER_FUNCS['decord'] def read_video(path, num_frames=16): frames, frame_indices, video_duration = video_reader( path, num_frames, 'rand', max_num_frames=-1 ) video = test_transform(frames) return video def read_audio(path): melbins = 128 target_length = 1024 skip_norm = False norm_mean = -4.2677393 norm_std = 4.5689974 waveform, sr = torchaudio.load(path) waveform = waveform - waveform.mean() # audio fbank = torchaudio.compliance.kaldi.fbank(waveform, htk_compat=True, sample_frequency=sr, use_energy=False, window_type='hanning', num_mel_bins=melbins, dither=0.0, frame_shift=10) n_frames = fbank.shape[0] p = target_length - n_frames # cut and pad if p > 0: m = torch.nn.ZeroPad2d((0, 0, 0, p)) fbank = m(fbank) elif p < 0: fbank = fbank[0:target_length, :] # SpecAug, not do for eval set fbank = torch.transpose(fbank, 0, 1) # this is just to satisfy new torchaudio version, which only accept [1, freq, time] fbank = fbank.unsqueeze(0) # squeeze it back, it is just a trick to satisfy new torchaudio version fbank = fbank.squeeze(0) fbank = torch.transpose(fbank, 0, 1) # normalize the input for both training and test if not skip_norm: fbank = (fbank - norm_mean) / (norm_std * 2) # skip normalization the input if you are trying to get the normalization stats. else: pass audio = fbank return audio do_sample=False num_beams=3 max_length=30 def inference(image, audio, video, task_type, instruction): if task_type == 'Image Captioning': text = [''] text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device) model = model_caption.clone() elif task_type == 'Video Captioning': text = [''] text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device) model_caption = model_caption.load_state_dict(state_dict_video_caption,strict=False) model = model_caption.clone() elif task_type == 'Audio Captioning': text = [''] text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device) model_caption = model_caption.load_state_dict(state_dict_audio_caption,strict=False) model = model_caption.clone() elif task_type == 'Visual Question Answering': question = instruction+'?'+special_answer_token text_input = tokenizer(question, padding='longest', return_tensors="pt").to(device) model_caption = model_caption.load_state_dict(state_dict_vqa,strict=False) model = model_caption.clone() elif task_type == 'Visual Question Answering': question = instruction+'?'+special_answer_token text_input = tokenizer(question, padding='longest', return_tensors="pt").to(device) model_caption = model_caption.load_state_dict(state_dict_video_qa,strict=False) model = model_caption.clone() else: raise NotImplemented if "Video" in task_type: image = read_video(image) elif "Audio" in task_type: image = read_audio(image) else: image = transform(image) image = image.to(device,non_blocking=True).unsqueeze(0) with torch.autocast(device_type=device_type, dtype=torch.bfloat16, enabled=True): out = model(image=image, text=text_input, mode='generate', return_dict=True, max_length=max_length, do_sample=do_sample, num_beams=num_beams) if 'Captioning' in task_type: for i, o in enumerate(out): res = tokenizer.decode(o) response = res.split('')[1].replace(pad_token, '').replace('', '').replace(eos_token, '') # skip_special_tokens=True else: for o in out: o_list = o.tolist() response = tokenizer.decode(o_list).split(special_answer_token)[1].replace(pad_token, '').replace('', '').replace(eos_token, '') # skip_special_tokens=True return response inputs = [gr.inputs.Image(type='pil'), gr.Audio(source="upload", type="filepath"), gr.Video(source="upload", type="filepath"), gr.inputs.Radio(choices=['Image Captioning', 'Video Captioning', 'Audio Captioning', "Visual Question Answering", "Visual Grounding", "General", "General Video"], type="value", default="Image Captioning", label="Task"), gr.inputs.Textbox(lines=1, label="Instruction")] outputs = ['text'] examples = [ ['examples/images/soccer.jpg', None, None, 'Image Captioning', None], ['examples/images/ski.jpg', None, None, 'Visual Question Answering', 'what does the woman wearing black do?'], ['examples/images/banana.jpg', None, None, 'Image Captioning', None], ['examples/images/skateboard.jpg', None, None, 'Visual Question Answering', 'what is on top of the skateboard?'], ['examples/images/baseball.jpg', None, None, 'Image Captioning', None], [None, None, 'examples/videos/video7014.mp4', 'Video Captioning', None], [None, None, 'examples/videos/video7017.mp4', 'Video Captioning', None], [None, None, 'examples/videos/video7019.mp4', 'Video Captioning', None], [None, None, 'examples/videos/video7021.mp4', 'Video Captioning', None], [None, None, 'examples/videos/video7021.mp4', 'Video Captioning', None], [None, 'examples/audios/6cS0FsUM-cQ.wav', None, 'Audio Captioning', None], [None, 'examples/audios/AJtNitYMa1I.wav', None, 'Audio Captioning', None], ] title = "eP-ALM" description = "Gradio Demo for eP-ALM: " article = "

Paper | Github Repo

" io = gr.Interface(fn=inference, inputs=inputs, outputs=outputs, title=title, description=description, article=article, examples=examples, cache_examples=False) io.launch()