import os os.system('cd TimeSformer;' 'pip install .; cd ..') os.system('ls -l') os.system('pwd') import os, sys sys.path.append("/home/user/app/TimeSformer/") import timesformer import torch from torchvision import transforms from transformers import AutoTokenizer from PIL import Image import json import os from torchvision import transforms from models.epalm import ePALM import os from transformers import AutoTokenizer # import ruamel_yaml as yaml from ruamel.yaml import YAML import torch import gradio as gr import torchaudio yaml=YAML(typ='safe') use_cuda = torch.cuda.is_available() device = torch.device('cuda') if use_cuda else torch.device('cpu') device_type = 'cuda' if use_cuda else 'cpu' ## Load model ### Captioning config = 'configs/image/ePALM_caption.yaml' # config = yaml.load(open(config, 'r'), Loader=yaml.Loader) config = yaml.load(open(config, 'r')) text_model = 'facebook/opt-2.7b' vision_model_name = 'vit_base_patch16_224' # text_model = 'facebook/opt-6.7b' # vision_model_name = 'vit_large_patch16_224' start_layer_idx = 19 end_layer_idx = 31 low_cpu = True MODEL = ePALM(opt_model_name=text_model, vision_model_name=vision_model_name, use_vis_prefix=True, start_layer_idx=start_layer_idx, end_layer_idx=end_layer_idx, return_hidden_state_vision=True, config=config, low_cpu=low_cpu ) print("Model Built") MODEL.to(device) checkpoint_path = 'checkpoints/float32/ePALM_caption/checkpoint_best.pth' # checkpoint_path = '/data/mshukor/logs/eplam/models/accelerate/ePALM_pt_L_acc_caption/checkpoint_best.pth' checkpoint = torch.load(checkpoint_path, map_location='cpu') state_dict = checkpoint['model'] msg = MODEL.load_state_dict(state_dict,strict=False) MODEL.bfloat16() checkpoint_path = 'checkpoints/float32/ePALM_vqa/checkpoint_best.pth' checkpoint = torch.load(checkpoint_path, map_location='cpu') state_dict_vqa = checkpoint['model'] ## Load tokenizer tokenizer = AutoTokenizer.from_pretrained(text_model, use_fast=False) eos_token = tokenizer.eos_token pad_token = tokenizer.pad_token special_answer_token = '' special_tokens_dict = {'additional_special_tokens': [special_answer_token]} tokenizer.add_special_tokens(special_tokens_dict) image_size = 224 normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) transform = transforms.Compose([ transforms.Resize((image_size,image_size),interpolation=Image.BICUBIC), transforms.ToTensor(), normalize, ]) do_sample=False num_beams=5 max_length=30 def inference(image, task_type, instruction): if task_type == 'Image Captioning': text = [''] text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device) model = MODEL elif task_type == 'Visual Question Answering': question = instruction+'?'+special_answer_token text_input = tokenizer(question, padding='longest', return_tensors="pt").to(device) msg = MODEL.load_state_dict(state_dict_vqa,strict=False) model = MODEL print(msg) else: raise NotImplemented image = transform(image) image = image.to(device,non_blocking=True).unsqueeze(0) with torch.autocast(device_type=device_type, dtype=torch.bfloat16, enabled=True): out = model(image=image, text=text_input, mode='generate', return_dict=True, max_length=max_length, do_sample=do_sample, num_beams=num_beams) if 'Captioning' in task_type: for i, o in enumerate(out): res = tokenizer.decode(o) response = res.split('')[1].replace(pad_token, '').replace('', '').replace(eos_token, '') # skip_special_tokens=True else: for o in out: o_list = o.tolist() response = tokenizer.decode(o_list).split(special_answer_token)[1].replace(pad_token, '').replace('', '').replace(eos_token, '') # skip_special_tokens=True return response inputs = [gr.inputs.Image(type='pil'), gr.inputs.Radio(choices=['Image Captioning', "Visual Question Answering",], type="value", default="Image Captioning", label="Task"), gr.inputs.Textbox(lines=1, label="Instruction")] outputs = ['text'] examples = [ ['examples/images/soccer.jpg', 'Image Captioning', None], ['examples/images/ski.jpg', 'Visual Question Answering', 'what does the woman do?'], ['examples/images/banana.jpg', 'Image Captioning', None], ['examples/images/skateboard.jpg', 'Visual Question Answering', 'what is the colour of the bird?'], ['examples/images/baseball.jpg', 'Image Captioning', None], ] title = "eP-ALM for Image-Text tasks" description = "Gradio Demo for eP-ALM. For this demo, we use 2.7B OPT. As the model runs on CPUs and float16 mixed precision is not supported on CPUs, the generation can take up to 2 mins." article = "

Paper | Github Repo

" io = gr.Interface(fn=inference, inputs=inputs, outputs=outputs, title=title, description=description, article=article, examples=examples, cache_examples=False) io.launch()