Spaces:
Sleeping
Sleeping
File size: 1,033 Bytes
ff0bf2c edb1739 0f4c863 edb1739 ff0bf2c 0c1bcd6 ff0bf2c 0c1bcd6 ff0bf2c 0c1bcd6 ff0bf2c 0c1bcd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import streamlit as st
import tensorflow as tf
import pickle
# Model ve Vectorizer'ı yükleme
model = tf.keras.models.load_model("xss_detection_model-3.h5")
with open("vectorizer.pkl", "rb") as file:
vectorizer = pickle.load(file)
# GIF arka planını eklemek için HTML
st.markdown(
"""
<style>
.stApp {
background-image: url(https://i.pinimg.com/originals/19/e1/71/19e171391727335f510db47a13269d2d.gif);
background-size: cover;
text-align: center; # Bu satır eklendi
}
</style>
""",
unsafe_allow_html=True
)
# Streamlit başlığı
st.title("XSS Detector")
# Kullanıcı girdisi
user_input = st.text_area("Enter your XSS payload here", height=100)
# Tespit butonu
if st.button("Detect"):
transformed_input = vectorizer.transform([user_input]).toarray()
prediction = model.predict(transformed_input)
# Sonucu ekranda gösterme
if prediction[0] > 0.5:
st.write("It's an XSS payload!")
else:
st.write("This is NOT an XSS payload!")
|