Spaces:
Running
Running
import streamlit as st | |
from keras.models import load_model | |
import librosa | |
import numpy as np | |
import pickle | |
# Model ve eğitim tarihçesini yükle | |
model = load_model('my_model.h5') | |
with open('pkl.pkl', 'rb') as file_pi: | |
history = pickle.load(file_pi) | |
def detect_fake(sound_file): | |
sound_signal, sample_rate = librosa.load(sound_file, res_type="kaiser_fast") | |
mfcc_features = librosa.feature.mfcc(y=sound_signal, sr=sample_rate, n_mfcc=40) | |
mfccs_features_scaled = np.mean(mfcc_features.T, axis=0) | |
mfccs_features_scaled = mfccs_features_scaled.reshape(1, -1) | |
result_array = model.predict(mfccs_features_scaled) | |
result_classes = ["FAKE", "REAL"] | |
result = np.argmax(result_array[0]) | |
return result_classes[result] | |
# Streamlit arayüzü | |
st.title('Ses Doğrulama Sistemi') | |
uploaded_file = st.file_uploader("Ses dosyası yükle", type=["wav", "mp3", "ogg"]) | |
if uploaded_file is not None: | |
# Dosyayı kaydet | |
with open(uploaded_file.name, "wb") as f: | |
f.write(uploaded_file.getbuffer()) | |
result = detect_fake(uploaded_file.name) | |
st.write(f"Tahmin: {result}") | |