File size: 15,415 Bytes
13362e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
# Copyright 2024 Llamole Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import global_add_pool, global_mean_pool, global_max_pool
from torch_geometric.nn import MessagePassing

import os
import json
from collections import defaultdict
from rdchiral.main import rdchiralRunText
import pandas as pd

import numpy as np
from rdkit import Chem
from rdkit.Chem import AllChem

def modulate(x, shift, scale):
    return x * (1 + scale) + shift

class GraphPredictor(nn.Module):
    def __init__(
        self,
        num_layer,
        hidden_size,
        drop_ratio,
        out_dim,
        model_config,
        label_to_template,
        available=None,
    ):
        super().__init__()
        self.model_config = model_config
        self.text_input_size = model_config.get("text_input_size", 768)
        self.available = available
        self.text_drop = drop_ratio
        
        # Process label_to_template
        if isinstance(label_to_template, pd.DataFrame):
            self.label_to_template = dict(
                zip(
                    label_to_template["rule_label"],
                    label_to_template["retro_templates"],
                )
            )
        else:
            self.label_to_template = label_to_template

        self.predictor = GNNRetrosynthsizer(
            num_layer, hidden_size, self.text_input_size, drop_ratio, out_dim
        )
        self.neural_cost = None

    def save_pretrained(self, output_dir):
        """
        Save the predictor model, model_config, label_to_template, and available to the output directory.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)

        model_path = os.path.join(output_dir, "model.pt")
        config_path = os.path.join(output_dir, "model_config.json")
        label_to_template_path = os.path.join(output_dir, "label_to_template.csv.gz")
        available_path = os.path.join(output_dir, "available.csv.gz")

        # Save predictor model
        torch.save(self.predictor.state_dict(), model_path)

        # Save cost model
        if self.neural_cost is not None:
            neural_cost_path = os.path.join(output_dir, "cost_model.pt")
            torch.save(self.neural_cost.state_dict(), neural_cost_path)

        # Save model_config to JSON file
        with open(config_path, "w") as f:
            json.dump(self.model_config, f, indent=2)

        # Save label_to_template to gzipped CSV file
        label_to_template_df = pd.DataFrame(
            list(self.label_to_template.items()),
            columns=["rule_label", "retro_templates"],
        )
        label_to_template_df.to_csv(
            label_to_template_path, index=False, compression="gzip"
        )

        # Save available to gzipped CSV file if it's not None
        if self.available is not None:
            if isinstance(self.available, list):
                available_df = pd.DataFrame(self.available, columns=["smiles"])
            elif isinstance(self.available, pd.DataFrame):
                available_df = self.available
            else:
                raise ValueError(
                    "available must be either a list of SMILES strings or a pandas DataFrame"
                )

            available_df.to_csv(available_path, index=False, compression="gzip")

    def disable_grads(self):
        """
        Disable gradients for all parameters in the model.
        """
        for param in self.predictor.parameters():
            param.requires_grad = False

    def init_neural_cost(self, model_path, verbose=False):
        model_file = os.path.join(model_path, "cost_model.pt")
        if os.path.exists(model_file):
            self.neural_cost = CostMLP(
                n_layers=1, fp_dim=2048, latent_dim=128, dropout_rate=0.1
            )
            self.neural_cost.load_state_dict(torch.load(model_file, map_location="cpu", weights_only=True))
        else:
            raise FileNotFoundError(f"Model file not found: {model_file}")

        for param in self.neural_cost.parameters():
            param.requires_grad = False

        if verbose:
            print("Neural Cost Model initialized.")
            print("Neural Cost Model:\n", self.neural_cost)

    def init_model(self, model_path, verbose=False):
        model_file = os.path.join(model_path, "model.pt")
        if os.path.exists(model_file):
            self.predictor.load_state_dict(torch.load(model_file, map_location="cpu", weights_only=True))
        else:
            raise FileNotFoundError(f"Model file not found: {model_file}")

        if verbose:
            print("GraphPredictor Model initialized.")
            print("Predictor model:\n", self.predictor)

    def forward(self, x, edge_index, edge_attr, batch, c):
        return self.predictor(x, edge_index, edge_attr, batch, c)

    def estimate_cost(self, smiles):
        if self.neural_cost is None:
            raise ValueError("Cost model is not initialized.")

        fp = self.neural_cost.smiles_to_fp(smiles)
        dtype, device = (
            next(self.neural_cost.parameters()).dtype,
            next(self.neural_cost.parameters()).device,
        )
        fp = torch.tensor(fp, dtype=dtype, device=device).view(1, -1)
        return self.neural_cost(fp).squeeze().item()


    def sample_templates(self, product_graph, c, product_smiles, topk=10):

        x, edge_index, edge_attr = (
            product_graph.x,
            product_graph.edge_index,
            product_graph.edge_attr,
        )
        batch = torch.zeros(x.size(0), dtype=torch.long, device=x.device)

        # Sample from main predictor
        logits_main = self.predictor(x, edge_index, edge_attr, batch, c)
        logits_drop = self.predictor(x, edge_index, edge_attr, batch, None)
        probs_main = logits_main + logits_drop * self.text_drop
        probs_main = F.softmax(logits_main, dim=1)

        topk_probs, topk_indices = torch.topk(probs_main, k=topk, dim=1)

        # Convert to numpy for easier handling
        topk_probs = topk_probs.float().cpu().numpy()
        topk_indices = topk_indices.cpu().numpy()

        # Get the corresponding templates
        templates = []
        for idx in topk_indices[0]:
            templates.append(self.label_to_template[idx])
        
        reactants_d = defaultdict(list)
        for prob, template in zip(topk_probs[0], templates):
            try:
                outcomes = rdchiralRunText(template, product_smiles)
                if len(outcomes) == 0:
                    continue
                outcomes = sorted(outcomes)
                for reactant in outcomes:
                    if "." in reactant:
                        str_list = sorted(reactant.strip().split("."))
                        reactants_d[".".join(str_list)].append(
                            (prob.item() / len(outcomes), template)
                        )
                    else:
                        reactants_d[reactant].append(
                            (prob.item() / len(outcomes), template)
                        )
            except Exception:
                pass
        
        if len(reactants_d) == 0:
            return [], [], []

        def merge(reactant_d):
            ret = []
            for reactant, l in reactant_d.items():
                ss, ts = zip(*l)
                ret.append((reactant, sum(ss), list(ts)[0]))
            reactants, scores, templates = zip(
                *sorted(ret, key=lambda item: item[1], reverse=True)
            )
            return list(reactants), list(scores), list(templates)

        reactants, scores, templates = merge(reactants_d)

        total = sum(scores)
        scores = [s / total for s in scores]

        return reactants, scores, templates

class GNNRetrosynthsizer(torch.nn.Module):
    def __init__(self, num_layer, hidden_size, text_input_size, drop_ratio, out_dim):
        super(GNNRetrosynthsizer, self).__init__()
        self.num_layer = num_layer
        self.drop_ratio = drop_ratio
        self.text_input_size = text_input_size
        if self.num_layer < 2:
            raise ValueError("Number of GNN layers must be greater than 1.")

        self.atom_encoder = nn.Embedding(118, hidden_size)

        ### set the initial virtual node embedding to 0.
        self.virtualnode_embedding = nn.Embedding(1, hidden_size)
        nn.init.constant_(self.virtualnode_embedding.weight.data, 0)

        ### List of GNNs
        self.convs = nn.ModuleList()
        self.norms = nn.ModuleList()
        self.adapters = nn.ModuleList()
        self.mlp_virtualnode_list = nn.ModuleList()
        
        self.text_dropping = nn.Embedding(1, text_input_size)
        for layer in range(num_layer):
            self.convs.append(GINConv(hidden_size, drop_ratio))
            self.adapters.append(
                nn.Sequential(
                    nn.SiLU(),
                    nn.Linear(self.text_input_size, 3 * hidden_size, bias=True),
                )
            )
            self.norms.append(nn.LayerNorm(hidden_size, elementwise_affine=False))
            if layer < num_layer - 1:
                self.mlp_virtualnode_list.append(
                    nn.Sequential(
                        nn.Linear(hidden_size, 4 * hidden_size),
                        nn.LayerNorm(4 * hidden_size),
                        nn.GELU(),
                        nn.Dropout(drop_ratio),
                        nn.Linear(4 * hidden_size, hidden_size),
                    )
                )

        self.decoder = nn.Sequential(
            nn.Linear(hidden_size, 4 * hidden_size),
            nn.LayerNorm(4 * hidden_size),
            nn.GELU(),
            nn.Dropout(drop_ratio),
            nn.Linear(4 * hidden_size, out_dim),
        )

    def initialize_weights(self):
        # Initialize transformer layers:
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)

        def _constant_init(module, i):
            if isinstance(module, nn.Linear):
                nn.init.constant_(module.weight, i)
                if module.bias is not None:
                    nn.init.constant_(module.bias, i)

        self.apply(_basic_init)

        for adapter in self.adapters:
            _constant_init(adapter[-1], 0)

    def disable_grads(self):
        """
        Disable gradients for all parameters in the model.
        """
        for param in self.parameters():
            param.requires_grad = False

    def forward(self, x, edge_index, edge_attr, batch, c):

        ### virtual node embeddings for graphs
        virtualnode_embedding = self.virtualnode_embedding(
            torch.zeros(batch[-1].item() + 1).to(edge_index.dtype).to(edge_index.device)
        )

        h_list = [self.atom_encoder(x)]

        if c is None:
            c = self.text_dropping.weight.expand(batch.max().item() + 1, -1)

        for layer in range(self.num_layer):
            ### add message from virtual nodes to graph nodes
            h_list[layer] = h_list[layer] + virtualnode_embedding[batch]

            shift, scale, gate = self.adapters[layer](c).chunk(3, dim=1)
            # B = batch.max().item() + 1
            node_counts = torch.bincount(batch, minlength=batch.max().item() + 1)
            shift = shift.repeat_interleave(node_counts, dim=0)
            scale = scale.repeat_interleave(node_counts, dim=0)
            gate = gate.repeat_interleave(node_counts, dim=0)

            ### Message passing among graph nodes
            h = self.convs[layer](h_list[layer], edge_index, edge_attr)
            # h = self.norms[layer](h)
            h = modulate(self.norms[layer](h), shift, scale)

            if layer < self.num_layer - 1:
                h = F.gelu(h)
                h = F.dropout(h, self.drop_ratio, training=self.training)

            h = gate * h + h_list[layer]
            h_list.append(h)

            if layer < self.num_layer - 1:
                ### add message from graph nodes to virtual nodes
                virtual_pool = global_max_pool(h_list[layer], batch)
                virtualnode_embedding = virtualnode_embedding + F.dropout(
                    self.mlp_virtualnode_list[layer](virtual_pool),
                    self.drop_ratio,
                    training=self.training,
                )

        h_node = h_list[-1]
        h_graph = global_add_pool(h_node, batch)
        output = self.decoder(h_graph)
        return output


class CostMLP(nn.Module):
    def __init__(self, n_layers, fp_dim, latent_dim, dropout_rate):
        super(CostMLP, self).__init__()
        self.n_layers = n_layers
        self.fp_dim = fp_dim
        self.latent_dim = latent_dim
        self.dropout_rate = dropout_rate

        layers = []
        layers.append(nn.Linear(fp_dim, latent_dim))
        layers.append(nn.ReLU())
        layers.append(nn.Dropout(self.dropout_rate))
        for _ in range(self.n_layers - 1):
            layers.append(nn.Linear(latent_dim, latent_dim))
            layers.append(nn.ReLU())
            layers.append(nn.Dropout(self.dropout_rate))
        layers.append(nn.Linear(latent_dim, 1))
        self.layers = nn.Sequential(*layers)

    def smiles_to_fp(self, smiles: str, fp_dim: int = 2048) -> np.ndarray:
        mol = Chem.MolFromSmiles(smiles)
        if mol is None:
            raise ValueError(f"Invalid SMILES string: {smiles}")

        fp = AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits=fp_dim)
        onbits = list(fp.GetOnBits())
        arr = np.zeros(fp.GetNumBits(), dtype=bool)
        arr[onbits] = 1

        return arr

    def forward(self, fps):
        x = fps
        x = self.layers(x)
        x = torch.log(1 + torch.exp(x))
        return x


class GINConv(MessagePassing):
    def __init__(self, hidden_size, drop_ratio):
        """
        hidden_size (int)
        """
        super(GINConv, self).__init__(aggr="add")

        self.mlp = nn.Sequential(
            nn.Linear(hidden_size, 4 * hidden_size),
            nn.LayerNorm(4 * hidden_size),
            nn.GELU(),
            nn.Dropout(drop_ratio),
            nn.Linear(4 * hidden_size, hidden_size),
        )
        self.eps = torch.nn.Parameter(torch.Tensor([0]))
        self.bond_encoder = nn.Embedding(5, hidden_size)

    def forward(self, x, edge_index, edge_attr):
        edge_embedding = self.bond_encoder(edge_attr)
        out = self.mlp(
            (1 + self.eps) * x
            + self.propagate(edge_index, x=x, edge_attr=edge_embedding)
        )
        return out

    def message(self, x_j, edge_attr):
        return F.gelu(x_j + edge_attr)

    def update(self, aggr_out):
        return aggr_out