File size: 9,886 Bytes
13362e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
from functools import partial
from typing import TYPE_CHECKING, Any, Dict, List, Union, Tuple
from datasets import Features
from ..extras.logging import get_logger
from .data_utils import Role
if TYPE_CHECKING:
from datasets import Dataset, IterableDataset
from transformers import Seq2SeqTrainingArguments
from ..hparams import DataArguments
from .parser import DatasetAttr
logger = get_logger(__name__)
def extract_all_smiles(text):
pattern = r'<mol_start>(.*?)<mol_end>'
return re.findall(pattern, text)
def replace_all_smiles(text):
pattern = r'<mol_start>.*?<mol_end>'
return re.sub(pattern, '<molecule>', text)
def replace_smiles_with_callback(text):
def replace_mol(match):
design_end = match.group(1)
smiles = match.group(2)
# return f'{design_end}<molecule><callback_start>{smiles}<callback_end>'
return f'{design_end}<molecule><rollback_start>{smiles}<rollback_end>'
pattern = r'(<design_start><design_end>)<mol_start>(.*?)<mol_end>'
text = re.sub(pattern, replace_mol, text)
# Replace remaining molecules that are not immediately after <design_start><design_end>
remaining_pattern = r'<mol_start>.*?<mol_end>'
text = re.sub(remaining_pattern, '<molecule>', text)
return text
def dict_to_list(data_dict, mol_properties):
return [data_dict.get(prop, None) for prop in mol_properties]
def insert_bodies(text, num_insertions, retro_labels):
design_pattern = r'<design_start>(.*?)<design_end>'
retro_pattern = r'(This is step \d+ in the retrosynthesis process\..*?<retro_start>.*?<retro_end>)(.*?)(?=This is step \d+|$)'
def replace_design(match):
return f'<design_start>' + ''.join(['<design_body>'] * num_insertions) + f'<design_end>'
def replace_retro(match, label):
step_content = match.group(1)
remaining_text = match.group(2)
retro_match = re.search(r'<retro_start>(.*?)<retro_end>', step_content)
if retro_match and label is not None:
modified_content = f'<retro_start>' + ''.join(['<retro_body>'] * num_insertions) + f'<retro_end>'
return re.sub(r'<retro_start>.*?<retro_end>', modified_content, step_content)
return step_content + remaining_text
text = re.sub(design_pattern, replace_design, text)
steps = re.finditer(retro_pattern, text)
modified_text = ""
last_end = 0
for i, step in enumerate(steps):
label = retro_labels[i] if i < len(retro_labels) else None
modified_text += text[last_end:step.start()] + replace_retro(step, label)
last_end = step.end()
modified_text += text[last_end:]
return modified_text
def extract_retro_products(text):
pattern = r'<retro_end>(.*?)>>'
matches = re.findall(pattern, text)
return [match.strip() for match in matches]
def convert_molqa(
examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr", data_args: "DataArguments"
) -> Dict[str, List[Any]]:
r"""
Converts alpaca format dataset to the standard format.
"""
outputs = {"prompt": [], "response": [], "system": [], "molecules": [], "property": [], "retro_labels": [], "retro_products": []}
mol_properties = ['BBBP', 'HIV', 'BACE', 'CO2', 'N2', 'O2', 'FFV', 'TC', 'SC', 'SA']
for i in range(len(examples[dataset_attr.prompt])):
prompt = []
if dataset_attr.history and isinstance(examples[dataset_attr.history][i], list):
for old_prompt, old_response in examples[dataset_attr.history][i]:
prompt.append({"role": Role.USER.value, "content": old_prompt})
prompt.append({"role": Role.ASSISTANT.value, "content": old_response})
content = []
if dataset_attr.prompt and examples[dataset_attr.prompt][i]:
content.append(examples[dataset_attr.prompt][i])
if dataset_attr.query and examples[dataset_attr.query][i]:
content.append(examples[dataset_attr.query][i])
prompt.append({"role": Role.USER.value, "content": "\n".join(content)}) # "prompt\nquery"
if dataset_attr.response and isinstance(examples[dataset_attr.response][i], str): # normal example
current_response = examples[dataset_attr.response][i]
smiles_list = extract_all_smiles(current_response)
modified_response = replace_smiles_with_callback(current_response)
retro_labels = examples[dataset_attr.retro][i] if dataset_attr.retro else []
retro_products = extract_retro_products(current_response)
modified_response = insert_bodies(modified_response, data_args.learned_query_size, retro_labels)
# modified_response = insert_bodies(modified_response, dataset_attr.learned_query_size, retro_labels)
response = [{"role": Role.ASSISTANT.value, "content": modified_response}]
else: # unsupervised
response = []
outputs["prompt"].append(prompt)
outputs["response"].append(response)
outputs["system"].append(examples[dataset_attr.system][i] if dataset_attr.system else "")
outputs["molecules"].append(smiles_list)
outputs["property"].append(dict_to_list(examples[dataset_attr.property][i], mol_properties))
outputs["retro_labels"].append(retro_labels)
outputs["retro_products"].append(retro_products)
return outputs
def map_smiles_to_id(example, smiles_to_id):
example['molecules'] = [smiles_to_id[smiles] for smiles in example['molecules']]
return example
def align_dataset(
dataset: Union["Dataset", "IterableDataset"],
dataset_attr: "DatasetAttr",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
) -> Tuple[Union["Dataset", "IterableDataset"], Dict[int, str]]:
r"""
Aligns the dataset and maps unique SMILES strings to molecule IDs.
This function performs the following operations:
1. Converts the dataset to the required format (molqa).
2. Extracts all unique SMILES strings from the dataset.
3. Maps each unique SMILES string to a unique integer ID (0, 1, 2, ...).
4. Update 'molecules' field to each example, containing the mapped IDs.
The aligned dataset contains the following fields:
prompt: [{"role": "user", "content": "..."}] * (2T - 1)
response: [{"role": "assistant", "content": "..."}] * N (N > 1 for ranking dataset)
system: "..."
molecules: [List of SMILES string]
property: [List of float values]
retro_labels: [List of int values]
retro_products: [List of SMILES string]
Args:
dataset (Union["Dataset", "IterableDataset"]): The input dataset.
dataset_attr (DatasetAttr): Attributes of the dataset.
data_args (DataArguments): Arguments for data processing.
training_args (Seq2SeqTrainingArguments): Arguments for training.
Returns:
Tuple[Union["Dataset", "IterableDataset"], Dict[int, str]]:
- The aligned and converted dataset with molecule IDs.
- A dictionary mapping molecule IDs to their SMILES strings.
"""
assert dataset_attr.formatting == "molqa"
features = Features.from_dict(
{
"prompt": [
{"role": {"dtype": "string", "_type": "Value"}, "content": {"dtype": "string", "_type": "Value"}}
],
"response": [
{"role": {"dtype": "string", "_type": "Value"}, "content": {"dtype": "string", "_type": "Value"}}
],
"system": {"dtype": "string", "_type": "Value"},
"molecules": [{'dtype': "string", "_type": "Value"}],
"property": [{"dtype": "float", "_type": "Value"}],
"retro_labels": [{"dtype": "int32", "_type": "Value"}],
"retro_products": [{'dtype': "string", "_type": "Value"}],
}
)
convert_func = partial(convert_molqa, dataset_attr=dataset_attr, data_args=data_args)
aligned = dataset.map(
convert_func,
batched=True,
remove_columns=['instruction', 'input', 'output', 'property', 'retro'],
features=features,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=(not data_args.overwrite_cache) or (training_args.local_process_index != 0),
desc="Converting molqa format of dataset"
)
# Extract all unique SMILES strings and map them to molecule IDs
all_smiles = set()
for item in aligned:
all_smiles.update(item['molecules'])
all_smiles.update(item['retro_products'])
smiles_to_id = {smiles: idx for idx, smiles in enumerate(sorted(all_smiles))}
id_to_smiles = {idx: smiles for smiles, idx in smiles_to_id.items()}
def map_smiles_to_id(example, smiles_to_id):
example['molecules'] = [smiles_to_id[smiles] for smiles in example['molecules']]
example['retro_products'] = [smiles_to_id[smiles] for smiles in example['retro_products']]
return example
smiles_convert_func = partial(map_smiles_to_id, smiles_to_id=smiles_to_id)
aligned = aligned.map(
smiles_convert_func,
desc="Mapping SMILES to molecule IDs",
)
return aligned, id_to_smiles |