File size: 5,719 Bytes
13362e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import os
import sys
from typing import TYPE_CHECKING, Literal, Optional, Union
from functools import partial

import numpy as np
from datasets import load_dataset, load_from_disk

# from ..extras.constants import FILEEXT2TYPE
from ..extras.logging import get_logger
from ..extras.misc import has_tokenized_data
from .aligner import align_dataset
from .data_utils import merge_dataset
from .parser import get_dataset_attr
# from .preprocess import get_preprocess_and_print_func
from .template import get_template_and_fix_tokenizer

from .processors.mmsupervised import (
    preprocess_mmsupervised_dataset,
    print_supervised_dataset_example,
    encode_graph_pyg
)

if TYPE_CHECKING:
    from datasets import Dataset, IterableDataset
    from transformers import PreTrainedTokenizer, ProcessorMixin, Seq2SeqTrainingArguments

    from ..hparams import DataArguments, ModelArguments
    from .parser import DatasetAttr


logger = get_logger(__name__)


def load_single_dataset(
    dataset_attr: "DatasetAttr",
    model_args: "ModelArguments",
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
) -> Union["Dataset", "IterableDataset"]:
    logger.info("Loading dataset {}...".format(dataset_attr))

    data_files = []
    assert dataset_attr.load_from == "file"

    data_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)
    data_files.append(data_path)
    data_path = data_path.split(".")[-1]

    if "trust_remote_code" in inspect.signature(load_dataset).parameters:  # for datasets==2.16.0
        kwargs = {"trust_remote_code": True}
    else:
        kwargs = {}

    dataset = load_dataset(
        path=data_path,
        name=None,
        data_dir=None,
        data_files=data_files,
        split=data_args.split,
        cache_dir=model_args.cache_dir,
        token=model_args.hf_hub_token,
        streaming=False,
        **kwargs,
    )
    
    converted_dataset, mol_id_to_smiles = align_dataset(dataset, dataset_attr, data_args, training_args)
    return converted_dataset, mol_id_to_smiles

def get_dataset(
    model_args: "ModelArguments",
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
    tokenizer: "PreTrainedTokenizer",
) -> Union["Dataset", "IterableDataset"]:
    
    template = get_template_and_fix_tokenizer(tokenizer, data_args.template, data_args.tool_format)
    if data_args.train_on_prompt and template.efficient_eos:
        raise ValueError("Current template does not support `train_on_prompt`.")
    print_function = partial(print_supervised_dataset_example, tokenizer=tokenizer)

    # Load tokenized dataset
    if data_args.tokenized_path is not None:
        if has_tokenized_data(data_args.tokenized_path):
            mol_id_to_pyg = encode_graph_pyg(data_path=data_args.tokenized_path)
            logger.warning("Loading dataset from disk will ignore other data arguments.")
            dataset = load_from_disk(data_args.tokenized_path)
            logger.info("Loaded tokenized dataset from {}.".format(data_args.tokenized_path))
            # print_function(next(iter(dataset)))
            data_iter = iter(dataset)
            print_function(next(data_iter))
            return mol_id_to_pyg, dataset
        
    # Load tokenized dataset
    with training_args.main_process_first(desc="load dataset"):
        # current only support one dataset
        dataset_attr = get_dataset_attr(data_args)
        dataset, mol_id_to_smiles = load_single_dataset(dataset_attr, model_args, data_args, training_args)

    with training_args.main_process_first(desc="pre-process dataset"):
        preprocess_func = partial(
            preprocess_mmsupervised_dataset,
            template=template,
            tokenizer=tokenizer,
            data_args=data_args,
        )

        column_names = list(next(iter(dataset)).keys())
        kwargs = {}
        kwargs = dict(
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=(not data_args.overwrite_cache) or (training_args.local_process_index != 0),
            desc="Running tokenizer on dataset",
        )
        
        dataset = dataset.map(preprocess_func, batched=True, remove_columns=column_names, **kwargs)
        
        if data_args.tokenized_path is not None:
            if training_args.should_save:
                dataset.save_to_disk(data_args.tokenized_path)
                mol_id_to_pyg = encode_graph_pyg(data_path=data_args.tokenized_path, mol_id_to_smiles=mol_id_to_smiles)
                logger.info("Tokenized dataset saved at {}.".format(data_args.tokenized_path))
                logger.info("Please restart the training with `tokenized_path: {}`.".format(data_args.tokenized_path))
            sys.exit(0)
        else:
            mol_id_to_pyg = encode_graph_pyg(mol_id_to_smiles=mol_id_to_smiles)

        if training_args.should_log:
            try:
                print_function(next(iter(dataset)))
            except StopIteration:
                raise RuntimeError("Cannot find valid samples.")
                
        return mol_id_to_pyg, dataset