File size: 50,131 Bytes
13362e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
# Copyright 2024 the Llamole Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PreTrainedModel, PreTrainedTokenizerBase
from transformers.utils import ModelOutput
from transformers.generation.utils import LogitsProcessorList, GenerationConfig
from huggingface_hub import snapshot_download

from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
import os
import json
import time
from dataclasses import dataclass

from typing import Union, Tuple, Optional
from .loader import load_language_model, load_tokenizer
from .loader import load_graph_decoder, load_graph_predictor, load_graph_encoder
from ..extras.constants import NO_LABEL_INDEX, IGNORE_INDEX, BOND_INDEX

from .planner import molstar
from rdkit import Chem
from torch_geometric.data import Data
from torch_geometric.data import Batch as PyGBatch
from torch_geometric.utils import remove_isolated_nodes

# Save configuration
def convert_to_dict(obj):
    if isinstance(obj, (int, float, str, bool, type(None))):
        return obj
    elif isinstance(obj, (list, tuple)):
        return [convert_to_dict(item) for item in obj]
    elif isinstance(obj, dict):
        return {k: convert_to_dict(v) for k, v in obj.items()}
    elif hasattr(obj, "__dict__"):
        return {
            k: convert_to_dict(v)
            for k, v in obj.__dict__.items()
            if not k.startswith("_")
        }
    else:
        return str(obj)  # Convert any other objects to string

@dataclass
class GraphLMOutput(ModelOutput):
    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    last_hidden_state: Optional[torch.FloatTensor] = None
    past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    additional_log_info: Optional[Dict[str, float]] = None


class GraphLLMForCausalMLM(PreTrainedModel):
    def __init__(
        self,
        model_args,
        finetuning_args,
        data_args,
        language_model,
        graph_decoder,
        graph_predictor,
        graph_encoder,
        token_id_dict,
        tokenizer,
    ):
        super().__init__(language_model.config)
        self.language_model = language_model
        self.graph_decoder = graph_decoder
        self.graph_predictor = graph_predictor
        self.graph_encoder = graph_encoder
        
        self.token_id_dict = token_id_dict
        self.num_body_tokens = data_args.learned_query_size

        self.loss_weight_lm = finetuning_args.loss_weight_lm
        self.loss_weight_design = finetuning_args.loss_weight_design
        self.loss_weight_retro = finetuning_args.loss_weight_retro

        self.model_args = model_args
        self.finetuning_args = finetuning_args
        self.data_args = data_args
        self.tokenizer = tokenizer

        # Initialize weights and apply final processing
        self.post_init()

    @classmethod
    def from_pretrained(
        cls,
        tokenizer: PreTrainedTokenizerBase,
        model_args,
        data_args,
        training_args,
        finetuning_args,
        load_adapter=False,
        add_valuehead=False,
    ):
        if load_adapter:
            if model_args.adapter_name_or_path is None:
                raise ValueError("Please specify the adapter_name_or_path when load_adapter is True.")
            
            if len(model_args.adapter_name_or_path) != 1:
                raise ValueError("Only one adapter is supported at a time.")
            
            adapter_path = model_args.adapter_name_or_path[0]
            
            if not os.path.exists(os.path.join(adapter_path, "adapter_config.json")):
                # Download from HuggingFace
                adapter_name = os.path.basename(adapter_path)
                valid_adapters = [
                    "Llama-3.1-8B-Instruct-Adapter",
                    "Qwen2-7B-Instruct-Adapter",
                    "Mistral-7B-Instruct-v0.3-Adapter"
                ]
                
                if adapter_name not in valid_adapters:
                    raise ValueError(f"Invalid adapter name. Supported adapters are: {', '.join(valid_adapters)}")
                
                repo_id = f"liuganghuggingface/Llamole-{adapter_name}"
                print(f"Downloading adapter {adapter_name} from HuggingFace repo: {repo_id}")
                
                try:
                    # Download all files including subfolders to the adapter_path
                    snapshot_download(
                        repo_id=repo_id,
                        local_dir=adapter_path,
                        local_dir_use_symlinks=False,
                        ignore_patterns=["*.md", "*.txt"]  # Optionally ignore certain file types
                    )

                    print(f"Successfully downloaded all adapter files to {adapter_path}")
                except Exception as e:
                    raise RuntimeError(f"Failed to download adapter files: {str(e)}")


        language_model = load_language_model(
            tokenizer,
            model_args,
            finetuning_args,
            training_args.do_train,
            add_valuehead,
        )

        device = next(language_model.parameters()).device

        graph_decoder = load_graph_decoder(
            model_args,
            path=model_args.graph_decoder_path,
            device=device,
        )

        graph_predictor = load_graph_predictor(
            model_args,
            path=model_args.graph_predictor_path,
            device=device,
        )

        graph_encoder = load_graph_encoder(
            model_args,
            path=model_args.graph_encoder_path,
            device=device,
        )

        if (
            getattr(language_model, "is_quantized", False)
            and not training_args.do_train
        ):
            setattr(
                language_model, "_hf_peft_config_loaded", True
            )  # hack here: make model compatible with prediction

        token_id_dict = {}
        for elem in model_args.new_special_tokens:
            if isinstance(elem, str) and len(elem) != 0:
                elem_token_ids = tokenizer.encode(elem, add_special_tokens=False)
                token_id_dict[elem] = elem_token_ids[0]

        model = cls(
            model_args=model_args,
            finetuning_args=finetuning_args,
            data_args=data_args,
            language_model=language_model,
            graph_decoder=graph_decoder,
            graph_predictor=graph_predictor,
            graph_encoder=graph_encoder,
            token_id_dict=token_id_dict,
            tokenizer=tokenizer,
        )

        graph_to_lm_connector = nn.Sequential(
            nn.Linear(graph_encoder.hidden_size, language_model.config.hidden_size),
            nn.SiLU(),
        )

        # Language Model to Graph Decoder connector
        lm_to_graph_decoder = nn.Sequential(
            nn.Linear(language_model.config.hidden_size, graph_decoder.text_input_size),
            nn.SiLU(),
        )

        # Language Model to Graph Predictor connector
        lm_to_graph_predictor = nn.Sequential(
            nn.Linear(
                language_model.config.hidden_size, graph_predictor.text_input_size
            ),
            nn.SiLU(),
        )

        for param in graph_to_lm_connector.parameters():
            if (
                param.dtype == torch.float32
                and model_args.compute_dtype != torch.float32
            ):
                param.data = param.data.to(model_args.compute_dtype)

        for param in lm_to_graph_decoder.parameters():
            if (
                param.dtype == torch.float32
                and model_args.compute_dtype != torch.float32
            ):
                param.data = param.data.to(model_args.compute_dtype)

        for param in lm_to_graph_predictor.parameters():
            if (
                param.dtype == torch.float32
                and model_args.compute_dtype != torch.float32
            ):
                param.data = param.data.to(model_args.compute_dtype)

        # Check if connector path is provided and load if available
        if load_adapter:
            if (
                hasattr(model_args, "graph_lm_connector_path")
                and model_args.graph_lm_connector_path
            ):
                connector_path = model_args.graph_lm_connector_path

                graph_to_lm_connector.load_state_dict(
                    torch.load(
                        os.path.join(connector_path, "graph_to_lm_connector.pt"),
                        map_location=device,
                        weights_only=True,
                    )
                )

                lm_to_graph_decoder.load_state_dict(
                    torch.load(
                        os.path.join(connector_path, "lm_to_graph_decoder.pt"),
                        map_location=device,
                        weights_only=True,
                    )
                )

                lm_to_graph_predictor.load_state_dict(
                    torch.load(
                        os.path.join(connector_path, "lm_to_graph_predictor.pt"),
                        map_location=device,
                        weights_only=True,
                    )
                )
            else:
                raise ValueError(f"Connector should be automatically downloaded with the adapter. Please manually download to the path {connector_path}")

        model.graph_to_lm_connector = graph_to_lm_connector
        model.lm_to_graph_decoder = lm_to_graph_decoder
        model.lm_to_graph_predictor = lm_to_graph_predictor
        model.graph_to_lm_connector.to(device)
        model.lm_to_graph_decoder.to(device)
        model.lm_to_graph_predictor.to(device)

        return model

    def to(self, device):
        super().to(device)
        self.language_model.to(device)
        self.graph_decoder.to(device)
        self.graph_predictor.to(device)
        self.graph_encoder.to(device)
        self.graph_to_lm_connector.to(device)
        self.lm_to_graph_decoder.to(device)
        self.lm_to_graph_predictor.to(device)
        return self

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        molecule_graphs: Optional[PyGBatch] = None,
        molecule_properties: Optional[torch.FloatTensor] = None,
        design_graphs: Optional[PyGBatch] = None,
        retro_labels: Optional[torch.LongTensor] = None,
        retro_product_graphs: Optional[PyGBatch] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = True,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, GraphLMOutput]:
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        mol_token_id = self.token_id_dict["<molecule>"]
        design_start_token_id = self.token_id_dict["<design_start>"]
        retro_start_token_id = self.token_id_dict["<retro_start>"]

        # PeftModelForCausalLM -> LlamaForCausalLM -> LlamaModel
        base_llm = self.language_model.model.model
        inputs_embeds = base_llm.embed_tokens(input_ids)
        mol_positions = (input_ids == mol_token_id).nonzero()

        mol_embeds = self.graph_encoder(
            molecule_graphs.x,
            molecule_graphs.edge_index,
            molecule_graphs.edge_attr,
            molecule_graphs.batch,
        )
        mol_embeds = self.graph_to_lm_connector(mol_embeds)

        assert (
            mol_positions.shape[0] == mol_embeds.shape[0]
        ), f"Number of molecule tokens ({mol_positions.shape[0]}) does not match number of molecule embeddings ({mol_embeds.shape[0]})"

        inputs_embeds[mol_positions[:, 0], mol_positions[:, 1]] = mol_embeds.to(
            inputs_embeds.dtype
        )

        lm_outputs = self.language_model(
            input_ids=None,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            labels=labels,
        )

        lm_loss = lm_outputs.loss
        lm_hidden_states = lm_outputs.hidden_states[-1]

        design_loss = 0
        if design_graphs is not None:
            design_start_positions = (input_ids == design_start_token_id).nonzero()
            design_body_start = design_start_positions[:, 1] + 1
            design_body_indices = design_body_start.unsqueeze(1) + torch.arange(
                self.num_body_tokens, device=input_ids.device
            )
            design_hidden = lm_hidden_states[
                design_start_positions[:, 0].unsqueeze(1), design_body_indices[:, 1]
            ].mean(dim=1)
            if design_start_positions.numel() > 0:
                design_hidden = self.lm_to_graph_decoder(design_hidden)
                design_loss = self.graph_decoder(
                    design_graphs.x,
                    design_graphs.edge_index,
                    design_graphs.edge_attr,
                    design_graphs.batch,
                    molecule_properties,
                    design_hidden,
                    NO_LABEL_INDEX,
                )

        # Process retro labels
        retro_loss = 0
        if retro_labels is not None:
            # Get retro start positions for valid retro labels: (batch, step)
            retro_start_positions = (input_ids == retro_start_token_id).nonzero()
            retro_labels = retro_labels[retro_labels != IGNORE_INDEX]
            valid_retro_mask = retro_labels != NO_LABEL_INDEX
            retro_start_positions = retro_start_positions[valid_retro_mask]
            retro_labels = retro_labels[valid_retro_mask]

            if len(retro_labels) > 0:
                # Get the query hidden states for each retro prediction
                retro_body_start = retro_start_positions[:, 1] + 1
                retro_body_indices = retro_body_start.unsqueeze(1) + torch.arange(
                    self.num_body_tokens, device=input_ids.device
                )
                retro_hidden = lm_hidden_states[
                    retro_start_positions[:, 0].unsqueeze(1), retro_body_indices
                ].mean(dim=1)

                # Prepare graph inputs
                retro_product_graphs = retro_product_graphs[
                    valid_retro_mask.nonzero().view(-1)
                ]
                retro_product_graphs = PyGBatch.from_data_list(retro_product_graphs)

                # Transform hidden states and make predictions
                retro_hidden = self.lm_to_graph_predictor(retro_hidden)
                retro_pred = self.graph_predictor(
                    retro_product_graphs.x,
                    retro_product_graphs.edge_index,
                    retro_product_graphs.edge_attr,
                    retro_product_graphs.batch,
                    retro_hidden,
                )
                retro_loss = F.cross_entropy(
                    retro_pred,
                    retro_labels,
                )

        total_loss = (
            self.loss_weight_lm * lm_loss
            + self.loss_weight_design * retro_loss
            + self.loss_weight_retro * retro_loss
        )

        if not return_dict:
            output = (lm_outputs.logits,) + lm_outputs[1:]
            return ((total_loss,) + output) if total_loss is not None else output

        return GraphLMOutput(
            loss=total_loss,
            logits=lm_outputs.logits,
            past_key_values=lm_outputs.past_key_values,
            hidden_states=lm_outputs.hidden_states,
            attentions=lm_outputs.attentions,
        )

    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
        state_dict: Optional[dict] = None,
        save_function: Callable = torch.save,
        push_to_hub: bool = False,
        max_shard_size: Union[int, str] = "5GB",
        safe_serialization: bool = True,
        variant: Optional[str] = None,
        token: Optional[Union[str, bool]] = None,
        save_peft_format: bool = True,
        save_graph_modules: bool = False,
        **kwargs,
    ):
        """
        Save the model and its configuration file to a directory.
        """
        if os.path.isfile(save_directory):
            raise ValueError(
                f"Provided path ({save_directory}) should be a directory, not a file"
            )

        os.makedirs(save_directory, exist_ok=True)

        # Save language model
        language_model_path = os.path.join(save_directory)
        self.language_model.save_pretrained(
            language_model_path,
            is_main_process=is_main_process,
            state_dict=state_dict,
            save_function=save_function,
            push_to_hub=False,  # set to false
            max_shard_size=max_shard_size,
            safe_serialization=safe_serialization,
            variant=variant,
            token=token,
            save_peft_format=save_peft_format,
        )

        if save_graph_modules:
            # Save graph models
            graph_models = {
                "graph_decoder": self.graph_decoder,
                "graph_predictor": self.graph_predictor,
                "graph_encoder": self.graph_encoder,
            }
            for name, model in graph_models.items():
                model_path = os.path.join(save_directory, name)
                model.save_pretrained(model_path)

        # Save additional components
        additional_components = {
            "graph_to_lm_connector": self.graph_to_lm_connector,
            "lm_to_graph_decoder": self.lm_to_graph_decoder,
            "lm_to_graph_predictor": self.lm_to_graph_predictor,
        }
        connector_path = os.path.join(save_directory, "connector")
        for name, component in additional_components.items():
            os.makedirs(connector_path, exist_ok=True)
            component_path = os.path.join(connector_path, f"{name}.pt")
            torch.save(component.state_dict(), component_path)

        config_dict = {
            "model_args": convert_to_dict(self.model_args),
            "finetuning_args": convert_to_dict(self.finetuning_args),
            "data_args": convert_to_dict(self.data_args),
            "token_id_dict": self.token_id_dict,
            "num_body_tokens": self.num_body_tokens,
            "loss_weight_lm": self.loss_weight_lm,
            "loss_weight_design": self.loss_weight_design,
            "loss_weight_retro": self.loss_weight_retro,
        }

        config_path = os.path.join(save_directory, "graphllm_config.json")
        with open(config_path, "w") as f:
            json.dump(config_dict, f, indent=2)

        # Push to hub if required
        if push_to_hub:
            raise NotImplementedError("Push to hub not implemented yet")

    def add_special_body_tokens(
        self,
        input_ids: torch.LongTensor,
        body_token_id: int,
        num_body_tokens: int,
        start_token_id: Optional[int] = None,
    ) -> torch.LongTensor:
        batch_size, seq_length = input_ids.shape
        start_len = 1 if start_token_id is not None else 0
        if seq_length < num_body_tokens + start_len:
            seq_length = seq_length + num_body_tokens + start_len

        # Create a tensor to hold start positions for each batch item
        start_positions = torch.full(
            (batch_size,),
            seq_length - start_len - num_body_tokens,
            device=input_ids.device,
        )
        # Calculate how many tokens to keep from the original input
        tokens_to_keep = seq_length - num_body_tokens

        # Find start positions
        if start_token_id is not None:
            start_pos_rows, start_pos_cols = (input_ids == start_token_id).nonzero(
                as_tuple=True
            )
            for row, col in zip(start_pos_rows, start_pos_cols):
                start_positions[row] = col
            tokens_to_keep = seq_length - num_body_tokens - 1

        # Create body tokens
        body_tokens = torch.full(
            (batch_size, num_body_tokens), body_token_id, device=input_ids.device
        )

        # Create new input_ids with left padding
        new_input_ids = torch.full(
            (batch_size, seq_length),
            self.tokenizer.eos_token_id,
            device=input_ids.device,
        )

        for i in range(batch_size):
            start_pos = start_positions[i]
            # Keep the rightmost tokens_to_keep tokens before the start token
            keep_start = max(0, start_pos - tokens_to_keep)

            if start_token_id is not None:
                new_input_ids[
                    i, -(num_body_tokens + 1 + (start_pos - keep_start)) :
                ] = torch.cat(
                    [
                        input_ids[i, keep_start:start_pos],
                        torch.LongTensor([start_token_id]).to(input_ids.device),
                        body_tokens[i],
                    ]
                )
            else:
                new_input_ids[
                    i, -(num_body_tokens + 1 + (start_pos - keep_start)) :
                ] = torch.cat([input_ids[i, keep_start:start_pos], body_tokens[i]])
        return new_input_ids

    @torch.no_grad()
    def design_molecule(
        self,
        input_ids: torch.LongTensor,
        attention_mask: torch.FloatTensor,
        molecule_properties: Optional[torch.FloatTensor] = None,
        molecule_graphs: Optional[PyGBatch] = None,
        rollback: bool = False,
        **kwargs,
    ) -> List[Optional[str]]:
        design_start_token_id = self.token_id_dict["<design_start>"]
        design_body_token_id = self.token_id_dict["<design_body>"]

        # 1. Generate molecular design analysis
        if molecule_graphs is None:
            analysis_tokens = self.language_model.generate(
                inputs=input_ids,
                attention_mask=attention_mask,
                **kwargs,
            )
            analysis_tokens = analysis_tokens[:, input_ids.shape[1] :]
        else:
            mol_token_id = self.token_id_dict["<molecule>"]
            base_llm = self.language_model.model
            inputs_embeds = base_llm.embed_tokens(input_ids)

            mol_positions = (input_ids == mol_token_id).nonzero()
            mol_embeds = self.graph_encoder(
                molecule_graphs.x,
                molecule_graphs.edge_index,
                molecule_graphs.edge_attr,
                molecule_graphs.batch,
            )
            mol_embeds = self.graph_to_lm_connector(mol_embeds)

            assert (
                mol_positions.shape[0] == mol_embeds.shape[0]
            ), f"Number of molecule tokens ({mol_positions.shape[0]}) does not match number of molecule embeddings ({mol_embeds.shape[0]})"
            inputs_embeds[mol_positions[:, 0], mol_positions[:, 1]] = mol_embeds.to(
                inputs_embeds.dtype
            )
            analysis_tokens = self.language_model.generate(
                attention_mask=attention_mask,
                inputs_embeds=inputs_embeds,
                **kwargs,
            ) # no input

        # 2. Add special tokens for design body
        design_input_ids = self.add_special_body_tokens(
            analysis_tokens,
            design_body_token_id,
            self.num_body_tokens,
            start_token_id=design_start_token_id,
        )
        design_input_ids = torch.cat([input_ids, design_input_ids], dim=1)

        # 3. Get LLM embeddings for design body
        lm_outputs = self.language_model(
            input_ids=design_input_ids,
            attention_mask=torch.ones_like(design_input_ids),
            output_hidden_states=True,
            return_dict=True,
        )
        lm_hidden_states = lm_outputs.hidden_states[-1]
        design_hidden = lm_hidden_states[:, -self.num_body_tokens :].mean(dim=1)

        # 4. Generate molecules using graph decoder
        design_hidden = self.lm_to_graph_decoder(design_hidden)
        molecule_properties = molecule_properties.type_as(design_hidden)
        smiles_list = self.graph_decoder.generate(
            molecule_properties,
            design_hidden,
            NO_LABEL_INDEX,
        )

        # Handle None values in smiles_list
        if rollback and None in smiles_list:
            smiles_list = self.design_rollback(design_input_ids, smiles_list, **kwargs)

        return analysis_tokens, smiles_list

    def design_rollback(
        self,
        analysis_tokens: torch.LongTensor,
        smiles_list: List[Optional[str]],
        **kwargs,
    ) -> List[Optional[str]]:
        rollback_token_id = self.token_id_dict.get("<rollback_start>")
        rollback_end_token_id = self.token_id_dict.get("<rollback_end>")
        none_indices = [i for i, smiles in enumerate(smiles_list) if smiles is None]

        if not none_indices:
            return smiles_list  # No None values, return original list

        # Get corresponding analysis tokens for None indices
        none_indices = torch.LongTensor(none_indices)
        rollback_analysis_tokens = analysis_tokens[none_indices]

        # Add rollback token to the end of each analysis token sequence
        rollback_input_ids = self.add_special_body_tokens(
            rollback_analysis_tokens,
            rollback_token_id,
            1,
        )

        if "max_new_tokens" in kwargs:
            kwargs["max_new_tokens"] *= 2

        # Generate new tokens
        new_tokens = self.language_model.generate(
            inputs=rollback_input_ids,
            attention_mask=torch.ones_like(rollback_input_ids),
            **kwargs,
        )

        # Process and decode new tokens
        new_smiles = []
        for seq in new_tokens[:, rollback_input_ids.shape[1] :]:
            decoded_seq = self.tokenizer.decode(seq, skip_special_tokens=False)
            end_smiles_pos = decoded_seq.find(
                self.tokenizer.decode([rollback_end_token_id])
            )

            if end_smiles_pos != -1:
                # If end token is found, truncate the sequence
                new_smiles.append(decoded_seq[:end_smiles_pos].strip())
            else:
                # If end token is not found, append None
                new_smiles.append(None)

        # Update smiles_list with new decoded tokens
        for i, new_smiles_str in zip(none_indices, new_smiles):
            smiles_list[i] = new_smiles_str

        return smiles_list

    def smiles_to_graph(self, smiles: str) -> Optional[Data]:
        mol = Chem.MolFromSmiles(smiles)
        if mol is None:
            print(f"Invalid SMILES string: {smiles}")
            return None

        type_idx = []
        for atom in mol.GetAtoms():
            if atom.GetAtomicNum() != 1:  # Exclude hydrogen atoms
                type_idx.append(
                    119 - 2 if atom.GetSymbol() == "*" else atom.GetAtomicNum() - 2
                )

        x = torch.LongTensor(type_idx)
        num_nodes = x.size(0)

        # Initialize edge_index and edge_attr as empty tensors
        edge_index = torch.empty((2, 0), dtype=torch.long)
        edge_attr = torch.empty((0,), dtype=torch.long)

        # Only process bonds if they exist
        if mol.GetNumBonds() > 0:
            bond_src = []
            bond_dst = []
            bond_type = []
            for bond in mol.GetBonds():
                start, end = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()
                # Exclude bonds involving hydrogen atoms
                if mol.GetAtomWithIdx(start).GetAtomicNum() != 1 and mol.GetAtomWithIdx(end).GetAtomicNum() != 1:
                    bond_src.extend([start, end])
                    bond_dst.extend([end, start])
                    bond_type.extend([BOND_INDEX.get(bond.GetBondType(), 1)] * 2)

            if bond_src:  # Only create edge_index and edge_attr if there are valid bonds
                edge_index = torch.tensor([bond_src, bond_dst], dtype=torch.long)
                edge_attr = torch.tensor(bond_type, dtype=torch.long)

        # Create PyG Data object
        data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr, num_nodes=num_nodes)
        
        return data

    def retrosynthesize_rollback(self, input_ids, design_text, smiles, **kwargs):
        input_text = f"{design_text} To synthesize {smiles}, follow these procedures: "
        input_tokens = self.tokenizer.encode(
            input_text, add_special_tokens=False, return_tensors="pt"
        )
        input_tokens = input_tokens.to(self.device)

        if "max_new_tokens" in kwargs:
            kwargs["max_new_tokens"] = 256

        # Generate tokens
        generated_tokens = self.language_model.generate(
            inputs=input_tokens,
            **kwargs,
        )
        generated_tokens = generated_tokens[:, input_tokens.shape[1] :]
        generated_tokens = generated_tokens.cpu().squeeze().tolist()
        new_input_text = f"To synthesize {smiles}, follow these procedures: "
        new_input_tokens = self.tokenizer.encode(new_input_text)
        generated_tokens = new_input_tokens + generated_tokens
        return generated_tokens
    
    def one_step_reaction(
        self,
        product_smiles,
        input_ids,
        design_text,
        molecule_graphs,
        topk,
        **kwargs,
    ):  
        # 1. Generate retrosynthesis analysis
        retro_start_token_id = self.token_id_dict["<retro_start>"]
        retro_body_token_id = self.token_id_dict["<retro_body>"]
        mol_token_id = self.token_id_dict["<molecule>"]

        input_text = f"{design_text} To synthesize <molecule>, follow these procedures: "
        
        prompt_tokens = self.tokenizer.encode(
            input_text, add_special_tokens=False, return_tensors="pt"
        )
        prompt_tokens = prompt_tokens.to(self.device)

        # Combine input_ids with new_prompt_tokens if input_ids is provided
        if input_ids is not None and molecule_graphs is not None:
            input_ids = input_ids.view(1, -1)
            prompt_tokens = torch.cat([input_ids, prompt_tokens], dim=-1)
        
        base_llm = self.language_model.model
        inputs_embeds = base_llm.embed_tokens(prompt_tokens)

        product_graph = self.smiles_to_graph(product_smiles)
        if product_graph is None:
            return {
                "reactants": [],
                "scores": [],
                "templates": [],
                "analysis": self.tokenizer.encode(
                    "Invalid product SMILES", add_special_tokens=False
                ),
            }
        product_graph.to(self.device)

        if input_ids is not None and molecule_graphs is not None:
            all_graphs = PyGBatch.from_data_list(molecule_graphs.to_data_list() + [product_graph])
        else:
            all_graphs = PyGBatch.from_data_list([product_graph])
        mol_embeds = self.graph_encoder(
            all_graphs.x,
            all_graphs.edge_index,
            all_graphs.edge_attr,
            all_graphs.batch,
        )
        mol_embeds = self.graph_to_lm_connector(mol_embeds)

        mol_positions = (prompt_tokens == mol_token_id).nonzero()
        assert (
            mol_positions.shape[0] == mol_embeds.shape[0]
        ), f"Number of molecule tokens ({mol_positions.shape[0]}) does not match number of molecule embeddings ({mol_embeds.shape[0]})"
        inputs_embeds[mol_positions[:, 0], mol_positions[:, 1]] = mol_embeds.to(
            inputs_embeds.dtype
        )
        attention_mask = torch.ones_like(prompt_tokens)

        if "max_new_tokens" in kwargs:
            kwargs["max_new_tokens"] = 512

        analysis_tokens = self.language_model.generate(
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            **kwargs,
        )

        # 2. Encode analysis with query tokens
        retro_input_ids = self.add_special_body_tokens(
            analysis_tokens,
            retro_body_token_id,
            self.num_body_tokens,
            start_token_id=retro_start_token_id,
        )
        # Get LLM embeddings for retro body
        lm_outputs = self.language_model(
            input_ids=retro_input_ids,
            attention_mask=torch.ones_like(retro_input_ids),
            output_hidden_states=True,
            return_dict=True,
        )
        lm_hidden_states = lm_outputs.hidden_states[-1]
        retro_hidden = lm_hidden_states[:, -self.num_body_tokens :].mean(dim=1)
        retro_hidden = self.lm_to_graph_predictor(retro_hidden)

        # 3. Sample retrosynthetic templates
        reactants, scores, templates = self.graph_predictor.sample_templates(
            product_graph, retro_hidden, product_smiles, topk
        )

        # 4. Adjust the input part from the generated tokens
        analysis_tokens = analysis_tokens.cpu().squeeze().tolist()
        input_text = f"To synthesize {product_smiles}, follow these procedures: "
        new_input_tokens = self.tokenizer.encode(input_text)
        analysis_tokens = new_input_tokens + analysis_tokens

        return {
            "reactants": reactants,
            "scores": scores,
            "templates": templates,
            "analysis": analysis_tokens,
        }

    @torch.no_grad()
    def estimate_synthesis_complexity(
        self,
        smiles: str,
        input_ids=None,
        reaction=None,
        molecule_cost_weight: float = 0,
        language_cost_weight: float = 1,
        reference_tokens: Optional[torch.LongTensor] = None,
    ):
        cost = 0

        if molecule_cost_weight is not None and molecule_cost_weight > 0:
            mol_cost = self.graph_predictor.estimate_cost(smiles)
            cost += mol_cost * molecule_cost_weight

        if language_cost_weight is not None and language_cost_weight > 0:
            language_cost = 0
            if reaction is None:
                message_content = f"""
                Estimate remaining steps for the target {smiles} consider the following factors::
                1. Intermediate complexity
                2. Reagent availability
                3. Side reactions
                4. Stereochemistry challenges"""
            else:
                step = reaction.depth + 1
                template = reaction.template
                # analysis_tokens = reaction.analysis_tokens
                reactants = reaction.children
                reactants = ", ".join([r.mol for r in reactants])
                message_content = f"""
                Estimate remaining steps for the target {smiles} given the following parameters:
                Current step {step},
                Current template: {template},
                Reactants: {reactants}. 
                Consider the following factors:
                1. Intermediate complexity
                2. Reagent availability
                3. Side reactions
                4. Stereochemistry challenges"""

            # Create the messages list for the chat template
            messages = [{"role": "user", "content": message_content}]

            # Apply the chat template
            chat_text = self.tokenizer.apply_chat_template(
                messages, tokenize=False, add_generation_prompt=True
            )

            answers = [
                "All readily available",
                "Some commercial, some need 1-2 steps",
                "Mix of commercial and multi-step synthesis",
                "Mostly require complex synthesis",
                "All require extensive multi-step synthesis",
            ]

            answer_costs = [0, 1, 2.5, 4.5, 7]
            answer_messages = [
                [
                    {
                        "role": "user",
                        "content": "Estimate the synthesis complexity:",
                    },
                    {"role": "assistant", "content": answer},
                ]
                for answer in answers
            ]
            answer_chat_texts = [
                self.tokenizer.apply_chat_template(
                    msg, tokenize=False, add_generation_prompt=False
                )
                for msg in answer_messages
            ]

            # Encode chat texts
            input_ids = self.tokenizer.encode(chat_text, return_tensors="pt").to(
                self.device
            )
            answer_tokens = [
                self.tokenizer.encode(text) for text in answer_chat_texts
            ]

            # Get logits from the language model
            outputs = self.language_model(input_ids)
            logits = outputs.logits[:, -1, :]

            # Calculate softmax probabilities for each answer
            answer_logits = torch.stack(
                [logits[:, tokens].mean(dim=1) for tokens in answer_tokens]
            )
            probs = torch.nn.functional.softmax(answer_logits, dim=0)
            language_cost = (
                (probs * torch.tensor(answer_costs, device=probs.device))
                .sum()
                .item()
            )

            language_cost = language_cost * language_cost_weight
            cost += language_cost

        return cost

    @torch.no_grad()
    def retrosynthesize(
        self,
        input_ids: torch.LongTensor,
        smiles: Optional[str] = None,
        molecule_graphs: Optional[PyGBatch] = None,
        expansion_topk: int = 50,
        iterations: int = 100,
        starting_mols: Optional[List[str]] = None,
        molecule_cost_weight: float = 0,
        language_cost_weight: float = 1,
        max_planning_time: int = 300,
        rollback: bool = True,
        design_text: Optional[str] = None,
        **kwargs,
    ) -> Dict[str, Any]:
        # Initialize variables
        target_smiles = None
        success = False
        reaction_list = None
        template_list = None
        analysis_tokens_list = None
        route_length = None
        total_time = 0.0
        cost = None

        # Handle starting molecules
        if starting_mols is None:
            if self.graph_predictor.available is None:
                raise ValueError(
                    "No starting molecules provided and no available starting molecules found."
                )
            starting_mols = self.graph_predictor.available["smiles"].tolist()

        # Handle case when no SMILES is provided
        if smiles is None and rollback:
            generated_tokens = self.retrosynthesize_rollback(input_ids, design_text, None, **kwargs)
            return self._create_failure_result(None, generated_tokens)

        # Preprocess SMILES
        target_smiles = smiles.replace("*", "[H]") if "*" in smiles else smiles

        # Check validity and handle rollback if necessary
        if not self.graph_decoder.check_valid(target_smiles) and rollback:
            generated_tokens = self.retrosynthesize_rollback(
                input_ids, design_text, target_smiles, **kwargs
            )
            return self._create_failure_result(target_smiles, generated_tokens)

        # Perform retrosynthesis
        t0 = time.time()

        def expand_fn(s):
            return self.one_step_reaction(
                s, input_ids=input_ids, design_text=design_text, molecule_graphs=molecule_graphs, topk=expansion_topk, **kwargs
            )

        def value_fn(s, r):
            return self.estimate_synthesis_complexity(
                s, input_ids, r, molecule_cost_weight, language_cost_weight
            )

        if target_smiles is None:
            return self._create_failure_result(None)

        success, best_route, iterations = molstar(
            target_mol=target_smiles,
            target_mol_id=0,
            starting_mols=starting_mols,
            expand_fn=expand_fn,
            value_fn=value_fn,
            iterations=iterations,
            max_time=max_planning_time,
        )

        total_time = time.time() - t0

        # Handle successful retrosynthesis
        if success:
            reaction_list, template_list, cost, analysis_tokens_list = best_route.get_reaction_list()
            route_length = best_route.length
        # Handle failed retrosynthesis with rollback
        elif rollback:
            generated_tokens = self.retrosynthesize_rollback(
                input_ids, design_text, target_smiles, **kwargs
            )
            return self._create_failure_result(target_smiles, generated_tokens)

        # Prepare and return result
        return {
            "target": target_smiles,
            "success": success,
            "time": total_time,
            "reaction_list": reaction_list,
            "cost": cost,
            "templates": template_list,
            "analysis_tokens": analysis_tokens_list,
            "route_length": route_length,
        }

    def _create_failure_result(
        self,
        target_smiles: Optional[str],
        generated_tokens: Optional[Union[torch.Tensor, list]] = None,
    ) -> Dict[str, Any]:
        return {
            "target": target_smiles,
            "success": False,
            "time": 0.0,
            "reaction_list": None,
            "cost": None,
            "templates": None,
            "analysis_tokens": (
                generated_tokens
                if generated_tokens is not None
                else "<NO ANALYSIS>"
            ),
            "route_length": None,
        }

    @torch.no_grad()
    def generate(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        molecule_properties: Optional[torch.FloatTensor] = None,
        molecule_graphs: Optional[PyGBatch] = None,
        rollback: bool = False,
        starting_mols: Optional[List[str]] = None,
        expansion_topk: int = 50,
        iterations: int = 100,
        molecule_cost_weight: float = 0,
        language_cost_weight: float = 1,
        do_molecular_design: Optional[bool] = True,
        do_retrosynthesis: bool = True,
        input_smiles_list: Optional[List[str]] = None,
        max_planning_time: int = 30,
        design_text_list: Optional[List[str]] = None,
        **kwargs,
    ) -> Dict:
        if attention_mask is None:
            attention_mask = input_ids.new_ones(input_ids.shape)

        all_info_dict = {
            "token_lists": [],
            "text_lists": [],
            "design_analysis_tokens": None,
            "smiles_list": None,
            "retro_plan_dict": None,
        }

        # Molecular design
        if do_molecular_design is True:
            design_analysis_tokens, smiles_list = self.design_molecule(
                input_ids,
                attention_mask,
                molecule_properties,
                molecule_graphs,
                rollback,
                **kwargs,
            )
            all_info_dict["design_analysis_tokens"] = design_analysis_tokens.cpu()
            all_info_dict["smiles_list"] = smiles_list
        elif input_smiles_list is not None:
            all_info_dict["smiles_list"] = input_smiles_list
        else:
            raise ValueError(
                "Either do_molecular_design must be True/False or input_smiles_list must be provided."
            )
        
        # Retrosynthesis
        if do_retrosynthesis:
            if all_info_dict["smiles_list"] is None:
                raise ValueError(
                    "Either molecular design must be performed or input_smiles_list must be provided for retrosynthesis."
                )

            all_info_dict["retro_plan_dict"] = {}
            for i, smiles in enumerate(all_info_dict["smiles_list"]):
                if design_text_list is not None:
                    design_text = design_text_list[0]
                else:
                    design_text = None
                all_info_dict["retro_plan_dict"][smiles] = self.retrosynthesize(
                    input_ids[i] if input_ids.dim() > 1 else input_ids,
                    smiles,
                    molecule_graphs=molecule_graphs,
                    starting_mols=starting_mols,
                    expansion_topk=expansion_topk,
                    iterations=iterations,
                    molecule_cost_weight=molecule_cost_weight,
                    language_cost_weight=language_cost_weight,
                    max_planning_time=max_planning_time,
                    design_text=design_text,
                    **kwargs,
                )
        else:
            all_info_dict["retro_plan_dict"] = {
                smile: {"success": None} for smile in all_info_dict["smiles_list"]
            }

        for batch_idx, generated_mol in enumerate(all_info_dict["smiles_list"]):
            token_list = []
            text_list = []
            ignore_positions = {}
            if do_molecular_design:
                design_tokens = all_info_dict["design_analysis_tokens"][
                    batch_idx
                ].tolist()
                token_list = design_tokens + [IGNORE_INDEX]
                if generated_mol is None:
                    generated_mol = "<NO MOLECULE>"
                text_list = [
                    self.tokenizer.decode(
                        design_tokens,
                        skip_special_tokens=True,
                        clean_up_tokenization_spaced=True,
                    ),
                    generated_mol + ". ",
                ]

                ignore_positions = {0: generated_mol}

            if do_retrosynthesis:
                available_mols = self.graph_predictor.available["smiles"].tolist()
                retro_plan = all_info_dict["retro_plan_dict"][generated_mol]
                if retro_plan["success"] is not None and retro_plan["success"]:
                    for i, (reaction, template, cost, analysis_tokens) in enumerate(
                        zip(
                            retro_plan["reaction_list"],
                            retro_plan["templates"],
                            retro_plan["cost"],
                            retro_plan["analysis_tokens"],
                        )
                    ):
                        if isinstance(analysis_tokens, torch.Tensor):
                            analysis_tokens = analysis_tokens.tolist()
                        token_list.extend(analysis_tokens + [IGNORE_INDEX])
                        text_list.extend(
                            [
                                self.tokenizer.decode(
                                    analysis_tokens,
                                    skip_special_tokens=True,
                                    clean_up_tokenization_spaced=True,
                                ),
                                reaction if reaction is not None else "<NO REACTION>",
                                " with the template ",
                                template if template is not None else "<NO TEMPLATE>",
                                " which requires the reactants: ",
                            ]
                        )
                        # Add these two lines to extract and add reactants
                        if reaction is not None:
                            reactants = reaction.split(">>")[1].split(".")
                            formatted_reactants = []
                            for reactant in reactants:
                                if reactant in available_mols:
                                    formatted_reactants.append(
                                        f"{reactant} (available)"
                                    )
                                else:
                                    formatted_reactants.append(reactant)
                            text_list.extend([", ".join(formatted_reactants), ". "])
                        else:
                            text_list.extend(["<NO REACTANTS>. "])
                        ignore_positions[len(token_list) - 1] = (
                            reaction,
                            template,
                            cost,
                        )
                else:
                    analysis_tokens = retro_plan["analysis_tokens"]
                    if isinstance(analysis_tokens, torch.Tensor):
                        analysis_tokens = analysis_tokens.tolist()

                    token_list.extend(analysis_tokens)
                    text_list.extend(
                        [
                            self.tokenizer.decode(
                                analysis_tokens,
                                skip_special_tokens=True,
                                clean_up_tokenization_spaced=True,
                            ),
                            " <NO REACTION FOUND>",
                        ]
                    )

            all_info_dict["token_lists"].append(token_list)
            all_info_dict["text_lists"].append(text_list)
            all_info_dict[f"batch_{batch_idx}_ignore_positions"] = ignore_positions

        all_info_dict["IGNORE_INDEX"] = IGNORE_INDEX
        return all_info_dict