|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import shutil |
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional |
|
|
|
import torch |
|
from transformers import PreTrainedModel |
|
|
|
from ..data import get_template_and_fix_tokenizer |
|
from ..extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME |
|
from ..extras.logging import get_logger |
|
from ..hparams import get_infer_args, get_train_args |
|
from ..model import load_language_model, load_tokenizer |
|
from .callbacks import LogCallback |
|
from .mmsft import run_mmsft |
|
|
|
if TYPE_CHECKING: |
|
from transformers import TrainerCallback |
|
|
|
logger = get_logger(__name__) |
|
|
|
def run_train(args: Optional[Dict[str, Any]] = None, callbacks: List["TrainerCallback"] = []) -> None: |
|
callbacks.append(LogCallback()) |
|
model_args, data_args, training_args, finetuning_args, generating_args = get_train_args(args) |
|
run_mmsft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) |
|
|
|
def merge_adapter(args: Optional[Dict[str, Any]] = None) -> None: |
|
model_args, data_args, finetuning_args, _ = get_infer_args(args) |
|
|
|
if model_args.export_dir is None: |
|
raise ValueError("Please specify `export_dir` to save model.") |
|
|
|
if model_args.adapter_name_or_path is not None and model_args.export_quantization_bit is not None: |
|
raise ValueError("Please merge adapters before quantizing the model.") |
|
|
|
tokenizer_module = load_tokenizer(model_args) |
|
tokenizer = tokenizer_module["tokenizer"] |
|
processor = tokenizer_module["processor"] |
|
get_template_and_fix_tokenizer(tokenizer, data_args.template) |
|
model = load_language_model(tokenizer, model_args, finetuning_args) |
|
|
|
if getattr(model, "quantization_method", None) and model_args.adapter_name_or_path is not None: |
|
raise ValueError("Cannot merge adapters to a quantized model.") |
|
|
|
if not isinstance(model, PreTrainedModel): |
|
raise ValueError("The model is not a `PreTrainedModel`, export aborted.") |
|
|
|
if getattr(model, "quantization_method", None) is None: |
|
output_dtype = getattr(model.config, "torch_dtype", torch.float16) |
|
setattr(model.config, "torch_dtype", output_dtype) |
|
model = model.to(output_dtype) |
|
else: |
|
setattr(model.config, "torch_dtype", torch.float16) |
|
|
|
model.save_pretrained( |
|
save_directory=model_args.export_dir, |
|
max_shard_size="{}GB".format(model_args.export_size), |
|
safe_serialization=(not model_args.export_legacy_format), |
|
) |
|
if model_args.export_hub_model_id is not None: |
|
model.push_to_hub( |
|
model_args.export_hub_model_id, |
|
token=model_args.hf_hub_token, |
|
max_shard_size="{}GB".format(model_args.export_size), |
|
safe_serialization=(not model_args.export_legacy_format), |
|
) |
|
|
|
if finetuning_args.stage == "rm": |
|
if model_args.adapter_name_or_path is not None: |
|
vhead_path = model_args.adapter_name_or_path[-1] |
|
else: |
|
vhead_path = model_args.model_name_or_path |
|
|
|
if os.path.exists(os.path.join(vhead_path, V_HEAD_SAFE_WEIGHTS_NAME)): |
|
shutil.copy( |
|
os.path.join(vhead_path, V_HEAD_SAFE_WEIGHTS_NAME), |
|
os.path.join(model_args.export_dir, V_HEAD_SAFE_WEIGHTS_NAME), |
|
) |
|
logger.info("Copied valuehead to {}.".format(model_args.export_dir)) |
|
elif os.path.exists(os.path.join(vhead_path, V_HEAD_WEIGHTS_NAME)): |
|
shutil.copy( |
|
os.path.join(vhead_path, V_HEAD_WEIGHTS_NAME), |
|
os.path.join(model_args.export_dir, V_HEAD_WEIGHTS_NAME), |
|
) |
|
logger.info("Copied valuehead to {}.".format(model_args.export_dir)) |
|
|
|
try: |
|
tokenizer.padding_side = "left" |
|
tokenizer.init_kwargs["padding_side"] = "left" |
|
tokenizer.save_pretrained(model_args.export_dir) |
|
if model_args.export_hub_model_id is not None: |
|
tokenizer.push_to_hub(model_args.export_hub_model_id, token=model_args.hf_hub_token) |
|
|
|
if model_args.visual_inputs and processor is not None: |
|
getattr(processor, "image_processor").save_pretrained(model_args.export_dir) |
|
if model_args.export_hub_model_id is not None: |
|
getattr(processor, "image_processor").push_to_hub( |
|
model_args.export_hub_model_id, token=model_args.hf_hub_token |
|
) |
|
|
|
except Exception: |
|
logger.warning("Cannot save tokenizer, please copy the files manually.") |
|
|