File size: 16,591 Bytes
2890711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import argparse
import datetime
import json
import math
import os
import sys
import time
from glob import glob
from pathlib import Path
from typing import Optional

import cv2
import numpy as np
import torch
import torchvision
from einops import rearrange, repeat
from fire import Fire
from omegaconf import OmegaConf
from PIL import Image
from torchvision.transforms import CenterCrop, Compose, Resize, ToTensor

sys.path.insert(1, os.path.join(sys.path[0], '..', '..'))
from sgm.util import default, instantiate_from_config

camera_poses = [
    'test_camera_L',
    'test_camera_D',
    'test_camera_I',
    'test_camera_O',
    'test_camera_R',
    'test_camera_U',
    'test_camera_Round-ZoomIn',
    'test_camera_Round-RI_90',
]

def to_relative_RT2(org_pose, keyframe_idx=0, keyframe_zero=False):
        org_pose = org_pose.reshape(-1, 3, 4) # [t, 3, 4]
        R_dst = org_pose[:, :, :3]
        T_dst = org_pose[:, :, 3:]

        R_src = R_dst[keyframe_idx: keyframe_idx+1].repeat(org_pose.shape[0], axis=0) # [t, 3, 3]
        T_src = T_dst[keyframe_idx: keyframe_idx+1].repeat(org_pose.shape[0], axis=0)

        R_src_inv = R_src.transpose(0, 2, 1) # [t, 3, 3]
        
        R_rel = R_dst @ R_src_inv # [t, 3, 3]
        T_rel = T_dst - R_rel@T_src

        RT_rel = np.concatenate([R_rel, T_rel], axis=-1) # [t, 3, 4]
        RT_rel = RT_rel.reshape(-1, 12) # [t, 12]

        if keyframe_zero:
            RT_rel[keyframe_idx] = np.zeros_like(RT_rel[keyframe_idx])

        return RT_rel

def get_RT(pose_dir='', video_frames=14, frame_stride=1, speed=1.0, **kwargs):
    pose_file = [f'{pose_dir}/{pose}.json' for pose in camera_poses]
    pose_sample_num = len(pose_file)

    pose_sample_num = len(pose_file)

    data_list = []
    pose_name = []


    for idx in range(pose_sample_num):
        cur_pose_name = camera_poses[idx].replace('test_camera_', '')
        pose_name.append(cur_pose_name)

        with open(pose_file[idx], 'r') as f:
            pose = json.load(f)
        pose = np.array(pose) # [t, 12]
        
        while frame_stride * video_frames > pose.shape[0]:
            frame_stride -= 1

        pose = pose[::frame_stride]
        if video_frames < 16:
            half = (pose.shape[0] - video_frames) // 2
            pose = pose[half:half+video_frames]
        # pose = pose[:video_frames]
        pose = pose.reshape(-1, 3, 4) # [t, 3, 4]
        # rescale
        pose[:, :, -1] = pose[:, :, -1] * np.array([3, 1, 4]) * speed
        pose = to_relative_RT2(pose)
        
            
        pose = torch.tensor(pose).float() # [t, 12]
        data_list.append(pose)

    # data_list = torch.stack(data_list, dim=0) # [pose_sample_num, t, 12]
    return data_list, pose_name

def sample(
    input_path: str = "examples/camera_poses",  # Can either be image file or folder with image files
    ckpt: str = "checkpoints/motionctrl_svd.ckpt",
    config: str = None,
    num_frames: Optional[int] = None,
    num_steps: Optional[int] = None,
    version: str = "svd",
    fps_id: int = 6,
    motion_bucket_id: int = 127,
    cond_aug: float = 0.02,
    seed: int = 23,
    decoding_t: int = 1,  # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
    device: str = "cuda",
    output_folder: Optional[str] = None,
    save_fps: int = 10,
    resize: Optional[bool] = False,
    pose_dir: str = '',
    sample_num: int = 1,
    height: int = 576,
    width: int = 1024,
    transform: Optional[bool] = False,
    save_images: Optional[bool] = False,
    speed: float = 1.0,
):
    """
    Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each
    image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`.
    """

    assert (version == "svd"), "Only SVD is supported for now."
    num_frames = default(num_frames, 14)
    num_steps = default(num_steps, 25)
    output_folder = default(output_folder, "outputs/motionctrl_svd/")
    model_config = default(config, "configs/inference/config_motionctrl_cmcm.yaml")

    model, filter = load_model(
        model_config,
        ckpt,
        device,
        num_frames,
        num_steps,
    )
    torch.manual_seed(seed)

    path = Path(input_path)
    all_img_paths = []
    if path.is_file():
        if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]):
            all_img_paths = [input_path]
        else:
            raise ValueError("Path is not valid image file.")
    elif path.is_dir():
        all_img_paths = sorted(
            [
                f
                for f in path.iterdir()
                if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"]
            ]
        )
        if len(all_img_paths) == 0:
            raise ValueError("Folder does not contain any images.")
    else:
        raise ValueError
    
    if transform:
        spatial_transform = Compose([
            Resize(size=width),
            CenterCrop(size=(height, width)),
        ])
    
    # get camera poses
    RTs, pose_name = get_RT(pose_dir=pose_dir, video_frames=num_frames, frame_stride=1, speed=speed)

    print(f'loaded {len(all_img_paths)} images.')
    os.makedirs(output_folder, exist_ok=True)
    for no, input_img_path in enumerate(all_img_paths):
        
        filepath, fullflname = os.path.split(input_img_path)
        filename, ext = os.path.splitext(fullflname)
        print(f'-sample {no+1}: {filename} ...')

        # RTs = RTs[0:1]
        for RT_idx in range(len(RTs)):
            cur_pose_name = pose_name[RT_idx]
            print(f'--pose: {cur_pose_name} ...')
            RT = RTs[RT_idx]
            RT = RT.unsqueeze(0).repeat(2,1,1)
            RT = RT.to(device)

            with Image.open(input_img_path) as image:
                if image.mode == "RGBA":
                    image = image.convert("RGB")
                if transform:
                    image = spatial_transform(image)
                if resize:
                    image = image.resize((width, height))
                w, h = image.size

                if h % 64 != 0 or w % 64 != 0:
                    width, height = map(lambda x: x - x % 64, (w, h))
                    image = image.resize((width, height))
                    print(
                        f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!"
                    )

                image = ToTensor()(image)
                image = image * 2.0 - 1.0

            image = image.unsqueeze(0).to(device)
            H, W = image.shape[2:]
            assert image.shape[1] == 3
            F = 8
            C = 4
            shape = (num_frames, C, H // F, W // F)
            if (H, W) != (576, 1024):
                print(
                    "WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`."
                )
            if motion_bucket_id > 255:
                print(
                    "WARNING: High motion bucket! This may lead to suboptimal performance."
                )

            if fps_id < 5:
                print("WARNING: Small fps value! This may lead to suboptimal performance.")

            if fps_id > 30:
                print("WARNING: Large fps value! This may lead to suboptimal performance.")

            value_dict = {}
            value_dict["motion_bucket_id"] = motion_bucket_id
            value_dict["fps_id"] = fps_id
            value_dict["cond_aug"] = cond_aug
            value_dict["cond_frames_without_noise"] = image
            value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)

            with torch.no_grad():
                with torch.autocast(device):
                    batch, batch_uc = get_batch(
                        get_unique_embedder_keys_from_conditioner(model.conditioner),
                        value_dict,
                        [1, num_frames],
                        T=num_frames,
                        device=device,
                    )
                    c, uc = model.conditioner.get_unconditional_conditioning(
                        batch,
                        batch_uc=batch_uc,
                        force_uc_zero_embeddings=[
                            "cond_frames",
                            "cond_frames_without_noise",
                        ],
                    )

                    for k in ["crossattn", "concat"]:
                        uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
                        uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
                        c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
                        c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)

                    

                    additional_model_inputs = {}
                    additional_model_inputs["image_only_indicator"] = torch.zeros(
                        2, num_frames
                    ).to(device)
                    #additional_model_inputs["image_only_indicator"][:,0] = 1
                    additional_model_inputs["num_video_frames"] = batch["num_video_frames"]

                    
                    additional_model_inputs["RT"] = RT

                    def denoiser(input, sigma, c):
                        return model.denoiser(
                            model.model, input, sigma, c, **additional_model_inputs
                        )

                    results = []
                    for j in range(sample_num):
                        randn = torch.randn(shape, device=device)
                        samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
                        model.en_and_decode_n_samples_a_time = decoding_t
                        samples_x = model.decode_first_stage(samples_z)
                        samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0) # [1*t, c, h, w]
                        results.append(samples)

                    samples = torch.stack(results, dim=0) # [sample_num, t, c, h, w]
                    samples = samples.data.cpu()

                    video_path = os.path.join(output_folder, f"{filename}_{cur_pose_name}.mp4")
                    save_results(samples, video_path, fps=save_fps)

                    if save_images:
                        for i in range(sample_num):
                            cur_output_folder = os.path.join(output_folder, f"{filename}", f"{cur_pose_name}", f"{i}")
                            os.makedirs(cur_output_folder, exist_ok=True)
                            for j in range(num_frames):
                                cur_img_path = os.path.join(cur_output_folder, f"{j:06d}.png")
                                torchvision.utils.save_image(samples[i,j], cur_img_path)
    
    print(f'Done! results saved in {output_folder}.')

def save_results(resutls, filename, fps=10):
    video = resutls.permute(1, 0, 2, 3, 4) # [t, sample_num, c, h, w]
    frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(video.shape[1])) for framesheet in video] #[3, 1*h, n*w]
    grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
    # already in [0,1]
    grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
    torchvision.io.write_video(filename, grid, fps=fps, video_codec='h264', options={'crf': '10'})

def get_unique_embedder_keys_from_conditioner(conditioner):
    return list(set([x.input_key for x in conditioner.embedders]))


def get_batch(keys, value_dict, N, T, device):
    batch = {}
    batch_uc = {}

    for key in keys:
        if key == "fps_id":
            batch[key] = (
                torch.tensor([value_dict["fps_id"]])
                .to(device)
                .repeat(int(math.prod(N)))
            )
        elif key == "motion_bucket_id":
            batch[key] = (
                torch.tensor([value_dict["motion_bucket_id"]])
                .to(device)
                .repeat(int(math.prod(N)))
            )
        elif key == "cond_aug":
            batch[key] = repeat(
                torch.tensor([value_dict["cond_aug"]]).to(device),
                "1 -> b",
                b=math.prod(N),
            )
        elif key == "cond_frames":
            batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0])
        elif key == "cond_frames_without_noise":
            batch[key] = repeat(
                value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0]
            )
        else:
            batch[key] = value_dict[key]

    if T is not None:
        batch["num_video_frames"] = T

    for key in batch.keys():
        if key not in batch_uc and isinstance(batch[key], torch.Tensor):
            batch_uc[key] = torch.clone(batch[key])
    return batch, batch_uc


def load_model(
    config: str,
    ckpt: str,
    device: str,
    num_frames: int,
    num_steps: int,
):

    config = OmegaConf.load(config)
    config.model.params.ckpt_path = ckpt
    if device == "cuda":
        config.model.params.conditioner_config.params.emb_models[
            0
        ].params.open_clip_embedding_config.params.init_device = device

    config.model.params.sampler_config.params.num_steps = num_steps
    config.model.params.sampler_config.params.guider_config.params.num_frames = (
        num_frames
    )

    model = instantiate_from_config(config.model)

    model = model.to(device).eval()    

    filter = None #DeepFloydDataFiltering(verbose=False, device=device)
    return model, filter


def get_parser():
    parser = argparse.ArgumentParser()
    parser.add_argument("--seed", type=int, default=23, help="seed for seed_everything")
    parser.add_argument("--ckpt", type=str, default=None, help="checkpoint path")
    parser.add_argument("--config", type=str, help="config (yaml) path")
    parser.add_argument("--input", type=str, default=None, help="image path or folder")
    parser.add_argument("--savedir", type=str, default=None, help="results saving path")
    parser.add_argument("--savefps", type=int, default=10, help="video fps to generate")
    parser.add_argument("--n_samples", type=int, default=1, help="num of samples per prompt",)
    parser.add_argument("--ddim_steps", type=int, default=50, help="steps of ddim if positive, otherwise use DDPM",)
    parser.add_argument("--ddim_eta", type=float, default=1.0, help="eta for ddim sampling (0.0 yields deterministic sampling)",)
    parser.add_argument("--frames", type=int, default=-1, help="frames num to inference")
    parser.add_argument("--fps", type=int, default=6, help="control the fps")
    parser.add_argument("--motion", type=int, default=127, help="control the motion magnitude")
    parser.add_argument("--cond_aug", type=float, default=0.02, help="adding noise to input image")
    parser.add_argument("--decoding_t", type=int, default=1, help="frames num to decoding per time")
    parser.add_argument("--resize", action='store_true', default=False, help="resize all input to default resolution")
    parser.add_argument("--sample_num", type=int, default=1, help="frames num to decoding per time")
    parser.add_argument("--pose_dir", type=str, default='', help="checkpoint path")
    parser.add_argument("--height", type=int, default=576, help="frames num to decoding per time")
    parser.add_argument("--width", type=int, default=1024, help="frames num to decoding per time")
    parser.add_argument("--transform", action='store_true', default=False, help="resize all input to specific resolution")
    parser.add_argument("--save_images", action='store_true', default=False, help="save images")
    parser.add_argument("--speed", type=float, default=1.0, help="speed of camera motion")
    return parser


if __name__ == "__main__":
    now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
    print("@MotionCrl+SVD Inference: %s"%now)
    #Fire(sample)
    parser = get_parser()
    args = parser.parse_args()
    sample(input_path=args.input, ckpt=args.ckpt, config=args.config, num_frames=args.frames, num_steps=args.ddim_steps, \
        fps_id=args.fps, motion_bucket_id=args.motion, cond_aug=args.cond_aug, seed=args.seed, \
        decoding_t=args.decoding_t, output_folder=args.savedir, save_fps=args.savefps, resize=args.resize,
        pose_dir=args.pose_dir, sample_num=args.sample_num, height=args.height, width=args.width,
        transform=args.transform, save_images=args.save_images, speed=args.speed)