Depth_Stitcher / app.py
mtwohey2's picture
Update app.py
c1e82ac verified
raw
history blame
7.11 kB
import os
import gc
import cv2
import gradio as gr
import numpy as np
import matplotlib.cm as cm
import matplotlib # New import for the updated colormap API
import subprocess
import sys
import spaces
from utils.dc_utils import read_video_frames, save_video
title = "#RGBD sbs output"
description = """**Video Depth Anything** + RGBD sbs output for viewing with Looking Glass Factory displays.
Please refer to our [paper](https://arxiv.org/abs/2501.12375), [project page](https://videodepthanything.github.io/), and [github](https://github.com/DepthAnything/Video-Depth-Anything) for more details."""
@spaces.GPU(enable_queue=True)
def stitch_rgbd_videos(
processed_video: str,
depth_vis_video: str,
max_len: int = -1,
target_fps: int = -1,
max_res: int = 1280,
stitch: bool = True,
grayscale: bool = True,
convert_from_color: bool = True,
blur: float = 0.3,
output_dir: str = './outputs',
input_size: int = 518,
):
# 1. Read input video frames for inference (downscaled to max_res).
frames, target_fps = read_video_frames(processed_video, max_len, target_fps, max_res)
video_name = os.path.basename(processed_video)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
stitched_video_path = None
if stitch:
# For stitching: read the original video in full resolution (without downscaling).
full_frames, _ = read_video_frames(processed_video, max_len, target_fps, max_res=-1)
depths, _ = read_video_frames(depth_vis_video, max_len, target_fps, max_res=-1)
# For each frame, create a visual depth image from the inferenced depths.
d_min, d_max = depths.min(), depths.max()
stitched_frames = []
for i in range(min(len(full_frames), len(depths))):
rgb_full = full_frames[i] # Full-resolution RGB frame.
depth_frame = depths[i]
# Normalize the depth frame to the range [0, 255].
depth_norm = ((depth_frame - d_min) / (d_max - d_min) * 255).astype(np.uint8)
# Generate depth visualization:
if grayscale:
if convert_from_color:
# First, generate a color depth image using the inferno colormap,
# then convert that color image to grayscale.
cmap = matplotlib.colormaps.get_cmap("inferno")
depth_color = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGB2GRAY)
depth_vis = np.stack([depth_gray] * 3, axis=-1)
else:
# Directly generate a grayscale image from the normalized depth values.
depth_vis = np.stack([depth_norm] * 3, axis=-1)
else:
# Generate a color depth image using the inferno colormap.
cmap = matplotlib.colormaps.get_cmap("inferno")
depth_vis = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
# Apply Gaussian blur if requested.
if blur > 0:
kernel_size = int(blur * 20) * 2 + 1 # Ensures an odd kernel size.
depth_vis = cv2.GaussianBlur(depth_vis, (kernel_size, kernel_size), 0)
# Resize the depth visualization to match the full-resolution RGB frame.
H_full, W_full = rgb_full.shape[:2]
depth_vis_resized = cv2.resize(depth_vis, (W_full, H_full))
# Concatenate the full-resolution RGB frame (left) and the resized depth visualization (right).
stitched = cv2.hconcat([rgb_full, depth_vis_resized])
stitched_frames.append(stitched)
stitched_frames = np.array(stitched_frames)
# Use only the first 20 characters of the base name for the output filename and append '_RGBD.mp4'
base_name = os.path.splitext(video_name)[0]
short_name = base_name[:20]
stitched_video_path = os.path.join(output_dir, short_name + '_RGBD.mp4')
save_video(stitched_frames, stitched_video_path, fps=target_fps)
# Merge audio from the input video into the stitched video using ffmpeg.
temp_audio_path = stitched_video_path.replace('_RGBD.mp4', '_RGBD_audio.mp4')
cmd = [
"ffmpeg",
"-y",
"-i", stitched_video_path,
"-i", processed_video,
"-c:v", "copy",
"-c:a", "aac",
"-map", "0:v:0",
"-map", "1:a:0?",
"-shortest",
temp_audio_path
]
subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
os.replace(temp_audio_path, stitched_video_path)
# Return stitched video.
return [stitched_video_path]
def construct_demo():
with gr.Blocks(analytics_enabled=False) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### If you find this work useful, please help ⭐ the [Github Repo](https://github.com/DepthAnything/Video-Depth-Anything). Thanks for your attention!")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
# Video input component for file upload.
processed_video = gr.Video(label="Input Video")
depth_vis_video = gr.Video(label="Generated Depth Video")
with gr.Column(scale=2):
with gr.Row(equal_height=True):
stitched_video = gr.Video(label="Stitched RGBD Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
with gr.Accordion("Advanced Settings", open=False):
max_len = gr.Slider(label="Max process length", minimum=-1, maximum=1000, value=-1, step=1)
target_fps = gr.Slider(label="Target FPS", minimum=-1, maximum=30, value=-1, step=1)
max_res = gr.Slider(label="Max side resolution", minimum=480, maximum=1920, value=1280, step=1)
stitch_option = gr.Checkbox(label="Stitch RGB & Depth Videos", value=True)
grayscale_option = gr.Checkbox(label="Output Depth as Grayscale", value=True)
convert_from_color_option = gr.Checkbox(label="Convert Grayscale from Color", value=True)
blur_slider = gr.Slider(minimum=0, maximum=1, step=0.01, label="Depth Blur (can reduce edge artifacts on display)", value=0.3)
generate_btn = gr.Button("Generate")
with gr.Column(scale=2):
pass
generate_btn.click(
fn=stitch_rgbd_videos,
inputs=[processed_video, depth_vis_video, max_len, target_fps, max_res, stitch_option, grayscale_option, convert_from_color_option, blur_slider],
outputs=[stitched_video],
)
return demo
if __name__ == "__main__":
demo = construct_demo()
demo.queue(max_size=2).launch()