Spaces:
Running
Running
Create utils/util.py
Browse files- utils/util.py +74 -0
utils/util.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (2025) Bytedance Ltd. and/or its affiliates
|
2 |
+
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
def compute_scale_and_shift(prediction, target, mask, scale_only=False):
|
17 |
+
if scale_only:
|
18 |
+
return compute_scale(prediction, target, mask), 0
|
19 |
+
else:
|
20 |
+
return compute_scale_and_shift_full(prediction, target, mask)
|
21 |
+
|
22 |
+
|
23 |
+
def compute_scale(prediction, target, mask):
|
24 |
+
# system matrix: A = [[a_00, a_01], [a_10, a_11]]
|
25 |
+
prediction = prediction.astype(np.float32)
|
26 |
+
target = target.astype(np.float32)
|
27 |
+
mask = mask.astype(np.float32)
|
28 |
+
|
29 |
+
a_00 = np.sum(mask * prediction * prediction)
|
30 |
+
a_01 = np.sum(mask * prediction)
|
31 |
+
a_11 = np.sum(mask)
|
32 |
+
|
33 |
+
# right hand side: b = [b_0, b_1]
|
34 |
+
b_0 = np.sum(mask * prediction * target)
|
35 |
+
|
36 |
+
x_0 = b_0 / (a_00 + 1e-6)
|
37 |
+
|
38 |
+
return x_0
|
39 |
+
|
40 |
+
def compute_scale_and_shift_full(prediction, target, mask):
|
41 |
+
# system matrix: A = [[a_00, a_01], [a_10, a_11]]
|
42 |
+
prediction = prediction.astype(np.float32)
|
43 |
+
target = target.astype(np.float32)
|
44 |
+
mask = mask.astype(np.float32)
|
45 |
+
|
46 |
+
a_00 = np.sum(mask * prediction * prediction)
|
47 |
+
a_01 = np.sum(mask * prediction)
|
48 |
+
a_11 = np.sum(mask)
|
49 |
+
|
50 |
+
b_0 = np.sum(mask * prediction * target)
|
51 |
+
b_1 = np.sum(mask * target)
|
52 |
+
|
53 |
+
x_0 = 1
|
54 |
+
x_1 = 0
|
55 |
+
|
56 |
+
det = a_00 * a_11 - a_01 * a_01
|
57 |
+
|
58 |
+
if det != 0:
|
59 |
+
x_0 = (a_11 * b_0 - a_01 * b_1) / det
|
60 |
+
x_1 = (-a_01 * b_0 + a_00 * b_1) / det
|
61 |
+
|
62 |
+
return x_0, x_1
|
63 |
+
|
64 |
+
|
65 |
+
def get_interpolate_frames(frame_list_pre, frame_list_post):
|
66 |
+
assert len(frame_list_pre) == len(frame_list_post)
|
67 |
+
min_w = 0.0
|
68 |
+
max_w = 1.0
|
69 |
+
step = (max_w - min_w) / (len(frame_list_pre)-1)
|
70 |
+
post_w_list = [min_w] + [i * step for i in range(1,len(frame_list_pre)-1)] + [max_w]
|
71 |
+
interpolated_frames = []
|
72 |
+
for i in range(len(frame_list_pre)):
|
73 |
+
interpolated_frames.append(frame_list_pre[i] * (1-post_w_list[i]) + frame_list_post[i] * post_w_list[i])
|
74 |
+
return interpolated_frames
|