Spaces:
Sleeping
Sleeping
Update auditqa/doc_process.py
Browse files- auditqa/doc_process.py +15 -7
auditqa/doc_process.py
CHANGED
|
@@ -31,29 +31,37 @@ def process_pdf():
|
|
| 31 |
text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
|
| 32 |
AutoTokenizer.from_pretrained("BAAI/bge-small-en-v1.5"),
|
| 33 |
chunk_size=chunk_size,
|
| 34 |
-
chunk_overlap=int(chunk_size /
|
| 35 |
add_start_index=True,
|
| 36 |
strip_whitespace=True,
|
| 37 |
separators=["\n\n", "\n"],
|
| 38 |
)
|
| 39 |
-
|
|
|
|
|
|
|
| 40 |
for file,value in docs.items():
|
| 41 |
doc_processed = text_splitter.split_documents(value)
|
| 42 |
for doc in doc_processed:
|
| 43 |
doc.metadata["source"] = file
|
| 44 |
doc.metadata["year"] = file[-4:]
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
| 48 |
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
embeddings = HuggingFaceEmbeddings(
|
| 51 |
model_kwargs = {'device': 'cpu'},
|
| 52 |
encode_kwargs = {'normalize_embeddings': True},
|
| 53 |
model_name="BAAI/bge-small-en-v1.5"
|
| 54 |
)
|
| 55 |
-
|
| 56 |
qdrant_collections = {}
|
|
|
|
| 57 |
for file,value in all_documents.items():
|
| 58 |
print("emebddings for:",file)
|
| 59 |
qdrant_collections[file] = Qdrant.from_documents(
|
|
|
|
| 31 |
text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
|
| 32 |
AutoTokenizer.from_pretrained("BAAI/bge-small-en-v1.5"),
|
| 33 |
chunk_size=chunk_size,
|
| 34 |
+
chunk_overlap=int(chunk_size / 20),
|
| 35 |
add_start_index=True,
|
| 36 |
strip_whitespace=True,
|
| 37 |
separators=["\n\n", "\n"],
|
| 38 |
)
|
| 39 |
+
|
| 40 |
+
all_documents = {'Consolidated':[], 'MWTS':[]}
|
| 41 |
+
|
| 42 |
for file,value in docs.items():
|
| 43 |
doc_processed = text_splitter.split_documents(value)
|
| 44 |
for doc in doc_processed:
|
| 45 |
doc.metadata["source"] = file
|
| 46 |
doc.metadata["year"] = file[-4:]
|
| 47 |
+
for key in all_documents:
|
| 48 |
+
if key in file:
|
| 49 |
+
print(key)
|
| 50 |
+
all_documents[key].append(doc_processed)
|
| 51 |
|
| 52 |
+
for key, docs_processed in all_documents.items():
|
| 53 |
+
docs_processed = [item for sublist in docs_processed for item in sublist]
|
| 54 |
+
all_documents[key] = docs_processed
|
| 55 |
+
|
| 56 |
+
|
| 57 |
embeddings = HuggingFaceEmbeddings(
|
| 58 |
model_kwargs = {'device': 'cpu'},
|
| 59 |
encode_kwargs = {'normalize_embeddings': True},
|
| 60 |
model_name="BAAI/bge-small-en-v1.5"
|
| 61 |
)
|
| 62 |
+
|
| 63 |
qdrant_collections = {}
|
| 64 |
+
|
| 65 |
for file,value in all_documents.items():
|
| 66 |
print("emebddings for:",file)
|
| 67 |
qdrant_collections[file] = Qdrant.from_documents(
|