mtyrrell commited on
Commit
68018e8
·
1 Parent(s): ff62217

testing local qdrant

Browse files
Files changed (1) hide show
  1. app.py +31 -31
app.py CHANGED
@@ -48,46 +48,46 @@ scheduler = CommitScheduler(
48
  # hence, comment out line below when creating for first time
49
  #vectorstores = load_new_chunks()
50
  # once the vectore embeddings are created we will use qdrant client to access these
51
- # vectorstores = get_local_qdrant()
52
 
53
  # Configure cloud Qdrant client #TESTING
54
- def get_cloud_qdrant():
55
- from langchain_community.embeddings import HuggingFaceEmbeddings
56
- from langchain_community.vectorstores import Qdrant
57
- from torch import cuda
58
 
59
- # Get config and setup embeddings like in process_chunks.py
60
- model_config = getconfig("model_params.cfg")
61
- device = 'cuda' if cuda.is_available() else 'cpu'
62
 
63
- embeddings = HuggingFaceEmbeddings(
64
- model_kwargs = {'device': device},
65
- encode_kwargs = {'normalize_embeddings': True},
66
- model_name=model_config.get('retriever','MODEL')
67
- )
68
 
69
- # Get Qdrant API key from environment variable
70
- qdrant_api_key = os.getenv("QDRANT")
71
- if not qdrant_api_key:
72
- raise ValueError("QDRANT API key not found in environment variables")
73
 
74
- # Create the Qdrant client
75
- client = QdrantClient(
76
- url="https://ff3f0448-0a00-470e-9956-49efa3071db3.europe-west3-0.gcp.cloud.qdrant.io:6333",
77
- api_key=qdrant_api_key,
78
- )
79
 
80
- # Wrap the client in Langchain's Qdrant vectorstore
81
- vectorstore = Qdrant(
82
- client=client,
83
- collection_name="allreports",
84
- embeddings=embeddings,
85
- )
86
 
87
- return {"allreports": vectorstore}
88
 
89
- # Replace local Qdrant with cloud Qdrant
90
- vectorstores = get_cloud_qdrant()
91
 
92
  #####---------------------CHAT-----------------------------------------------------
93
  def start_chat(query,history):
 
48
  # hence, comment out line below when creating for first time
49
  #vectorstores = load_new_chunks()
50
  # once the vectore embeddings are created we will use qdrant client to access these
51
+ vectorstores = get_local_qdrant()
52
 
53
  # Configure cloud Qdrant client #TESTING
54
+ # def get_cloud_qdrant():
55
+ # from langchain_community.embeddings import HuggingFaceEmbeddings
56
+ # from langchain_community.vectorstores import Qdrant
57
+ # from torch import cuda
58
 
59
+ # # Get config and setup embeddings like in process_chunks.py
60
+ # model_config = getconfig("model_params.cfg")
61
+ # device = 'cuda' if cuda.is_available() else 'cpu'
62
 
63
+ # embeddings = HuggingFaceEmbeddings(
64
+ # model_kwargs = {'device': device},
65
+ # encode_kwargs = {'normalize_embeddings': True},
66
+ # model_name=model_config.get('retriever','MODEL')
67
+ # )
68
 
69
+ # # Get Qdrant API key from environment variable
70
+ # qdrant_api_key = os.getenv("QDRANT")
71
+ # if not qdrant_api_key:
72
+ # raise ValueError("QDRANT API key not found in environment variables")
73
 
74
+ # # Create the Qdrant client
75
+ # client = QdrantClient(
76
+ # url="https://ff3f0448-0a00-470e-9956-49efa3071db3.europe-west3-0.gcp.cloud.qdrant.io:6333",
77
+ # api_key=qdrant_api_key,
78
+ # )
79
 
80
+ # # Wrap the client in Langchain's Qdrant vectorstore
81
+ # vectorstore = Qdrant(
82
+ # client=client,
83
+ # collection_name="allreports",
84
+ # embeddings=embeddings,
85
+ # )
86
 
87
+ # return {"allreports": vectorstore}
88
 
89
+ # # Replace local Qdrant with cloud Qdrant
90
+ # vectorstores = get_cloud_qdrant()
91
 
92
  #####---------------------CHAT-----------------------------------------------------
93
  def start_chat(query,history):