Spaces:
Running
Running
cloud qdrant restore
Browse files
app.py
CHANGED
@@ -46,48 +46,48 @@ scheduler = CommitScheduler(
|
|
46 |
# We need to create the local vectorstore collection once using load_chunks
|
47 |
# vectorestore colection are stored on persistent storage so this needs to be run only once
|
48 |
# hence, comment out line below when creating for first time
|
49 |
-
vectorstores = load_new_chunks()
|
50 |
# once the vectore embeddings are created we will use qdrant client to access these
|
51 |
-
vectorstores = get_local_qdrant()
|
52 |
|
53 |
# Configure cloud Qdrant client #TESTING
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
|
59 |
-
#
|
60 |
-
|
61 |
-
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
|
69 |
-
#
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
|
74 |
-
#
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
|
80 |
-
#
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
|
87 |
-
|
88 |
|
89 |
-
#
|
90 |
-
|
91 |
|
92 |
#####---------------------CHAT-----------------------------------------------------
|
93 |
def start_chat(query,history):
|
|
|
46 |
# We need to create the local vectorstore collection once using load_chunks
|
47 |
# vectorestore colection are stored on persistent storage so this needs to be run only once
|
48 |
# hence, comment out line below when creating for first time
|
49 |
+
# vectorstores = load_new_chunks()
|
50 |
# once the vectore embeddings are created we will use qdrant client to access these
|
51 |
+
# vectorstores = get_local_qdrant()
|
52 |
|
53 |
# Configure cloud Qdrant client #TESTING
|
54 |
+
def get_cloud_qdrant():
|
55 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
56 |
+
from langchain_community.vectorstores import Qdrant
|
57 |
+
from torch import cuda
|
58 |
|
59 |
+
# Get config and setup embeddings like in process_chunks.py
|
60 |
+
model_config = getconfig("model_params.cfg")
|
61 |
+
device = 'cuda' if cuda.is_available() else 'cpu'
|
62 |
|
63 |
+
embeddings = HuggingFaceEmbeddings(
|
64 |
+
model_kwargs = {'device': device},
|
65 |
+
encode_kwargs = {'normalize_embeddings': True},
|
66 |
+
model_name=model_config.get('retriever','MODEL')
|
67 |
+
)
|
68 |
|
69 |
+
# Get Qdrant API key from environment variable
|
70 |
+
qdrant_api_key = os.getenv("QDRANT")
|
71 |
+
if not qdrant_api_key:
|
72 |
+
raise ValueError("QDRANT API key not found in environment variables")
|
73 |
|
74 |
+
# Create the Qdrant client
|
75 |
+
client = QdrantClient(
|
76 |
+
url="https://ff3f0448-0a00-470e-9956-49efa3071db3.europe-west3-0.gcp.cloud.qdrant.io:6333",
|
77 |
+
api_key=qdrant_api_key,
|
78 |
+
)
|
79 |
|
80 |
+
# Wrap the client in Langchain's Qdrant vectorstore
|
81 |
+
vectorstore = Qdrant(
|
82 |
+
client=client,
|
83 |
+
collection_name="allreports",
|
84 |
+
embeddings=embeddings,
|
85 |
+
)
|
86 |
|
87 |
+
return {"allreports": vectorstore}
|
88 |
|
89 |
+
# Replace local Qdrant with cloud Qdrant
|
90 |
+
vectorstores = get_cloud_qdrant()
|
91 |
|
92 |
#####---------------------CHAT-----------------------------------------------------
|
93 |
def start_chat(query,history):
|