Spaces:
Sleeping
Sleeping
refactored generator
Browse files- README.md +37 -30
- app/generator.py +224 -0
- app/main.py +9 -8
- app/utils.py +3 -135
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 🤖
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
@@ -8,46 +8,53 @@ pinned: false
|
|
8 |
license: mit
|
9 |
---
|
10 |
|
11 |
-
#
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
## Configuration
|
16 |
-
|
17 |
-
1. The module requires an API key (set as an environment variable) for an inference provider to run. Multiple inference providers are supported. Make sure to set the appropriate environment variables:
|
18 |
-
- OpenAI: `OPENAI_API_KEY`
|
19 |
-
- Anthropic: `ANTHROPIC_API_KEY`
|
20 |
-
- Cohere: `COHERE_API_KEY`
|
21 |
-
- HuggingFace: `HF_TOKEN`
|
22 |
-
|
23 |
-
2. Inference provider and model settings are accessible via params.cfg
|
24 |
|
25 |
## MCP Endpoint
|
26 |
|
27 |
-
|
28 |
|
29 |
-
|
|
|
|
|
30 |
|
31 |
-
|
32 |
|
33 |
-
**
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
```
|
45 |
-
|
46 |
-
|
47 |
-
"context": "Documents and information about renewable energy sources..."
|
48 |
-
}
|
49 |
```
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
*This tool uses an LLM to generate answers using the most relevant information from the context, along with the input query.*
|
|
|
1 |
---
|
2 |
+
title: ChatFed Generator
|
3 |
emoji: 🤖
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
|
|
8 |
license: mit
|
9 |
---
|
10 |
|
11 |
+
# ChatFed Generator - MCP Server
|
12 |
|
13 |
+
A language model-based generation service designed for ChatFed RAG (Retrieval-Augmented Generation) pipelines. This module serves as an **MCP (Model Context Protocol) server** that generates contextual responses using configurable LLM providers with support for retrieval result processing.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
## MCP Endpoint
|
16 |
|
17 |
+
The main MCP function is `generate` which provides context-aware text generation using configurable LLM providers when properly configured with API credentials.
|
18 |
|
19 |
+
**Parameters**:
|
20 |
+
- `query` (str, required): The question or query to be answered
|
21 |
+
- `context` (str|list, required): Context for answering - can be plain text or list of retrieval result dictionaries
|
22 |
|
23 |
+
**Returns**: String containing the generated answer based on the provided context and query.
|
24 |
|
25 |
+
**Example usage**:
|
26 |
+
```python
|
27 |
+
from gradio_client import Client
|
28 |
|
29 |
+
client = Client("ENTER CONTAINER URL / SPACE ID")
|
30 |
+
result = client.predict(
|
31 |
+
query="What are the key findings?",
|
32 |
+
context="Your relevant documents or context here...",
|
33 |
+
api_name="/generate"
|
34 |
+
)
|
35 |
+
print(result)
|
36 |
+
```
|
37 |
|
38 |
+
## Configuration
|
39 |
|
40 |
+
### LLM Provider Configuration
|
41 |
+
1. Set your preferred inference provider in `params.cfg`
|
42 |
+
2. Configure the model and generation parameters
|
43 |
+
3. Set the required API key environment variable
|
44 |
+
4. [Optional] Adjust temperature and max_tokens settings
|
45 |
+
5. Run the app:
|
46 |
|
47 |
+
```bash
|
48 |
+
docker build -t chatfed-generator .
|
49 |
+
docker run -p 7860:7860 chatfed-generator
|
|
|
|
|
50 |
```
|
51 |
|
52 |
+
## Environment Variables Required
|
53 |
+
|
54 |
+
# Make sure to set the appropriate environment variables:
|
55 |
+
# - OpenAI: `OPENAI_API_KEY`
|
56 |
+
# - Anthropic: `ANTHROPIC_API_KEY`
|
57 |
+
# - Cohere: `COHERE_API_KEY`
|
58 |
+
# - HuggingFace: `HF_TOKEN`
|
59 |
+
|
60 |
|
|
app/generator.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import asyncio
|
3 |
+
import json
|
4 |
+
import ast
|
5 |
+
from typing import List, Dict, Any, Union
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
|
8 |
+
# LangChain imports
|
9 |
+
from langchain_openai import ChatOpenAI
|
10 |
+
from langchain_anthropic import ChatAnthropic
|
11 |
+
from langchain_cohere import ChatCohere
|
12 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
13 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
14 |
+
|
15 |
+
# Local imports
|
16 |
+
from .utils import getconfig, get_auth
|
17 |
+
|
18 |
+
# ---------------------------------------------------------------------
|
19 |
+
# Model / client initialization (non exaustive list of providers)
|
20 |
+
# ---------------------------------------------------------------------
|
21 |
+
config = getconfig("params.cfg")
|
22 |
+
|
23 |
+
PROVIDER = config.get("generator", "PROVIDER")
|
24 |
+
MODEL = config.get("generator", "MODEL")
|
25 |
+
MAX_TOKENS = int(config.get("generator", "MAX_TOKENS"))
|
26 |
+
TEMPERATURE = float(config.get("generator", "TEMPERATURE"))
|
27 |
+
|
28 |
+
# Set up authentication for the selected provider
|
29 |
+
auth_config = get_auth(PROVIDER)
|
30 |
+
|
31 |
+
def get_chat_model():
|
32 |
+
"""Initialize the appropriate LangChain chat model based on provider"""
|
33 |
+
common_params = {
|
34 |
+
"temperature": TEMPERATURE,
|
35 |
+
"max_tokens": MAX_TOKENS,
|
36 |
+
}
|
37 |
+
|
38 |
+
if PROVIDER == "openai":
|
39 |
+
return ChatOpenAI(
|
40 |
+
model=MODEL,
|
41 |
+
openai_api_key=auth_config["api_key"],
|
42 |
+
**common_params
|
43 |
+
)
|
44 |
+
elif PROVIDER == "anthropic":
|
45 |
+
return ChatAnthropic(
|
46 |
+
model=MODEL,
|
47 |
+
anthropic_api_key=auth_config["api_key"],
|
48 |
+
**common_params
|
49 |
+
)
|
50 |
+
elif PROVIDER == "cohere":
|
51 |
+
return ChatCohere(
|
52 |
+
model=MODEL,
|
53 |
+
cohere_api_key=auth_config["api_key"],
|
54 |
+
**common_params
|
55 |
+
)
|
56 |
+
elif PROVIDER == "huggingface":
|
57 |
+
# Initialize HuggingFaceEndpoint with explicit parameters
|
58 |
+
llm = HuggingFaceEndpoint(
|
59 |
+
repo_id=MODEL,
|
60 |
+
huggingfacehub_api_token=auth_config["api_key"],
|
61 |
+
task="text-generation",
|
62 |
+
temperature=TEMPERATURE,
|
63 |
+
max_new_tokens=MAX_TOKENS
|
64 |
+
)
|
65 |
+
return ChatHuggingFace(llm=llm)
|
66 |
+
else:
|
67 |
+
raise ValueError(f"Unsupported provider: {PROVIDER}")
|
68 |
+
|
69 |
+
# Initialize provider-agnostic chat model
|
70 |
+
chat_model = get_chat_model()
|
71 |
+
|
72 |
+
# ---------------------------------------------------------------------
|
73 |
+
# Context processing - may need further refinement (i.e. to manage other data sources)
|
74 |
+
# ---------------------------------------------------------------------
|
75 |
+
def extract_relevant_fields(retrieval_results: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
76 |
+
"""
|
77 |
+
Extract only relevant fields from retrieval results.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
retrieval_results: List of JSON objects from retriever
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
List of processed objects with only relevant fields
|
84 |
+
"""
|
85 |
+
|
86 |
+
retrieval_results = ast.literal_eval(retrieval_results)
|
87 |
+
|
88 |
+
processed_results = []
|
89 |
+
|
90 |
+
for result in retrieval_results:
|
91 |
+
# Extract the answer content
|
92 |
+
answer = result.get('answer', '')
|
93 |
+
|
94 |
+
# Extract document identification from metadata
|
95 |
+
metadata = result.get('answer_metadata', {})
|
96 |
+
doc_info = {
|
97 |
+
'answer': answer,
|
98 |
+
'filename': metadata.get('filename', 'Unknown'),
|
99 |
+
'page': metadata.get('page', 'Unknown'),
|
100 |
+
'year': metadata.get('year', 'Unknown'),
|
101 |
+
'source': metadata.get('source', 'Unknown'),
|
102 |
+
'document_id': metadata.get('_id', 'Unknown')
|
103 |
+
}
|
104 |
+
|
105 |
+
processed_results.append(doc_info)
|
106 |
+
|
107 |
+
return processed_results
|
108 |
+
|
109 |
+
def format_context_from_results(processed_results: List[Dict[str, Any]]) -> str:
|
110 |
+
"""
|
111 |
+
Format processed retrieval results into a context string for the LLM.
|
112 |
+
|
113 |
+
Args:
|
114 |
+
processed_results: List of processed objects with relevant fields
|
115 |
+
|
116 |
+
Returns:
|
117 |
+
Formatted context string
|
118 |
+
"""
|
119 |
+
if not processed_results:
|
120 |
+
return ""
|
121 |
+
|
122 |
+
context_parts = []
|
123 |
+
|
124 |
+
for i, result in enumerate(processed_results, 1):
|
125 |
+
doc_reference = f"[Document {i}: {result['filename']}"
|
126 |
+
if result['page'] != 'Unknown':
|
127 |
+
doc_reference += f", Page {result['page']}"
|
128 |
+
if result['year'] != 'Unknown':
|
129 |
+
doc_reference += f", Year {result['year']}"
|
130 |
+
doc_reference += "]"
|
131 |
+
|
132 |
+
context_part = f"{doc_reference}\n{result['answer']}\n"
|
133 |
+
context_parts.append(context_part)
|
134 |
+
|
135 |
+
return "\n".join(context_parts)
|
136 |
+
|
137 |
+
# ---------------------------------------------------------------------
|
138 |
+
# Core generation function for both Gradio UI and MCP
|
139 |
+
# ---------------------------------------------------------------------
|
140 |
+
async def _call_llm(messages: list) -> str:
|
141 |
+
"""
|
142 |
+
Provider-agnostic LLM call using LangChain.
|
143 |
+
|
144 |
+
Args:
|
145 |
+
messages: List of LangChain message objects
|
146 |
+
|
147 |
+
Returns:
|
148 |
+
Generated response content as string
|
149 |
+
"""
|
150 |
+
try:
|
151 |
+
# Use async invoke for better performance
|
152 |
+
response = await chat_model.ainvoke(messages)
|
153 |
+
return response.content.strip()
|
154 |
+
except Exception as e:
|
155 |
+
logging.exception(f"LLM generation failed with provider '{PROVIDER}' and model '{MODEL}': {e}")
|
156 |
+
raise
|
157 |
+
|
158 |
+
def build_messages(question: str, context: str) -> list:
|
159 |
+
"""
|
160 |
+
Build messages in LangChain format.
|
161 |
+
|
162 |
+
Args:
|
163 |
+
question: The user's question
|
164 |
+
context: The relevant context for answering
|
165 |
+
|
166 |
+
Returns:
|
167 |
+
List of LangChain message objects
|
168 |
+
"""
|
169 |
+
system_content = (
|
170 |
+
"You are an expert assistant. Answer the USER question using only the "
|
171 |
+
"CONTEXT provided. If the context is insufficient say 'I don't know.'"
|
172 |
+
)
|
173 |
+
|
174 |
+
user_content = f"### CONTEXT\n{context}\n\n### USER QUESTION\n{question}"
|
175 |
+
|
176 |
+
return [
|
177 |
+
SystemMessage(content=system_content),
|
178 |
+
HumanMessage(content=user_content)
|
179 |
+
]
|
180 |
+
|
181 |
+
|
182 |
+
async def generate(query: str, context: Union[str, List[Dict[str, Any]]]) -> str:
|
183 |
+
"""
|
184 |
+
Generate an answer to a query using provided context through RAG.
|
185 |
+
|
186 |
+
This function takes a user query and relevant context, then uses a language model
|
187 |
+
to generate a comprehensive answer based on the provided information.
|
188 |
+
|
189 |
+
Args:
|
190 |
+
query (str): User query
|
191 |
+
context (list): List of retrieval result objects (dictionaries)
|
192 |
+
Returns:
|
193 |
+
str: The generated answer based on the query and context
|
194 |
+
"""
|
195 |
+
if not query.strip():
|
196 |
+
return "Error: Query cannot be empty"
|
197 |
+
|
198 |
+
# Handle both string context (for Gradio UI) and list context (from retriever)
|
199 |
+
if isinstance(context, list):
|
200 |
+
if not context:
|
201 |
+
return "Error: No retrieval results provided"
|
202 |
+
|
203 |
+
# Process the retrieval results
|
204 |
+
processed_results = extract_relevant_fields(context)
|
205 |
+
formatted_context = format_context_from_results(processed_results)
|
206 |
+
|
207 |
+
if not formatted_context.strip():
|
208 |
+
return "Error: No valid content found in retrieval results"
|
209 |
+
|
210 |
+
elif isinstance(context, str):
|
211 |
+
if not context.strip():
|
212 |
+
return "Error: Context cannot be empty"
|
213 |
+
formatted_context = context
|
214 |
+
|
215 |
+
else:
|
216 |
+
return "Error: Context must be either a string or list of retrieval results"
|
217 |
+
|
218 |
+
try:
|
219 |
+
messages = build_messages(query, formatted_context)
|
220 |
+
answer = await _call_llm(messages)
|
221 |
+
return answer
|
222 |
+
except Exception as e:
|
223 |
+
logging.exception("Generation failed")
|
224 |
+
return f"Error: {str(e)}"
|
app/main.py
CHANGED
@@ -1,23 +1,23 @@
|
|
1 |
import gradio as gr
|
2 |
-
from .
|
3 |
|
4 |
# ---------------------------------------------------------------------
|
5 |
# Gradio Interface with MCP support
|
6 |
# ---------------------------------------------------------------------
|
7 |
ui = gr.Interface(
|
8 |
-
fn=
|
9 |
inputs=[
|
10 |
gr.Textbox(
|
11 |
label="Query",
|
12 |
lines=2,
|
13 |
-
placeholder="
|
14 |
-
info="
|
15 |
),
|
16 |
gr.Textbox(
|
17 |
label="Context",
|
18 |
lines=8,
|
19 |
-
placeholder="Paste relevant
|
20 |
-
info="Provide the context/documents to use for answering"
|
21 |
),
|
22 |
],
|
23 |
outputs=gr.Textbox(
|
@@ -25,8 +25,9 @@ ui = gr.Interface(
|
|
25 |
lines=6,
|
26 |
show_copy_button=True
|
27 |
),
|
28 |
-
title="
|
29 |
-
description="Ask questions based on provided context. Intended for use in RAG pipelines (i.e. context supplied by semantic retriever service)
|
|
|
30 |
)
|
31 |
|
32 |
# Launch with MCP server enabled
|
|
|
1 |
import gradio as gr
|
2 |
+
from .generator import generate
|
3 |
|
4 |
# ---------------------------------------------------------------------
|
5 |
# Gradio Interface with MCP support
|
6 |
# ---------------------------------------------------------------------
|
7 |
ui = gr.Interface(
|
8 |
+
fn=generate,
|
9 |
inputs=[
|
10 |
gr.Textbox(
|
11 |
label="Query",
|
12 |
lines=2,
|
13 |
+
placeholder="Enter query here",
|
14 |
+
info="The query to search for in the vector database"
|
15 |
),
|
16 |
gr.Textbox(
|
17 |
label="Context",
|
18 |
lines=8,
|
19 |
+
placeholder="Paste relevant context here",
|
20 |
+
info="Provide the context/documents to use for answering. The API expects a list of dictionaries, but the UI should except anything"
|
21 |
),
|
22 |
],
|
23 |
outputs=gr.Textbox(
|
|
|
25 |
lines=6,
|
26 |
show_copy_button=True
|
27 |
),
|
28 |
+
title="ChatFed Generation Module",
|
29 |
+
description="Ask questions based on provided context. Intended for use in RAG pipelines as an MCP server with other ChatFed modules (i.e. context supplied by semantic retriever service).",
|
30 |
+
api_name="generate"
|
31 |
)
|
32 |
|
33 |
# Launch with MCP server enabled
|
app/utils.py
CHANGED
@@ -1,14 +1,9 @@
|
|
1 |
-
import os
|
2 |
import configparser
|
3 |
import logging
|
4 |
from dotenv import load_dotenv
|
5 |
|
6 |
-
|
7 |
-
from langchain_openai import ChatOpenAI
|
8 |
-
from langchain_anthropic import ChatAnthropic
|
9 |
-
from langchain_cohere import ChatCohere
|
10 |
-
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
11 |
-
from langchain_core.messages import SystemMessage, HumanMessage
|
12 |
|
13 |
# Local .env file
|
14 |
load_dotenv()
|
@@ -30,7 +25,7 @@ def getconfig(configfile_path: str):
|
|
30 |
# ---------------------------------------------------------------------
|
31 |
# Provider-agnostic authentication and configuration
|
32 |
# ---------------------------------------------------------------------
|
33 |
-
def
|
34 |
"""Get authentication configuration for different providers"""
|
35 |
auth_configs = {
|
36 |
"openai": {"api_key": os.getenv("OPENAI_API_KEY")},
|
@@ -49,130 +44,3 @@ def get_auth_config(provider: str) -> dict:
|
|
49 |
raise RuntimeError(f"Missing API key for provider '{provider}'. Please set the appropriate environment variable.")
|
50 |
|
51 |
return auth_config
|
52 |
-
|
53 |
-
# ---------------------------------------------------------------------
|
54 |
-
# Model / client initialization
|
55 |
-
# ---------------------------------------------------------------------
|
56 |
-
config = getconfig("params.cfg")
|
57 |
-
|
58 |
-
PROVIDER = config.get("generator", "PROVIDER")
|
59 |
-
MODEL = config.get("generator", "MODEL")
|
60 |
-
MAX_TOKENS = int(config.get("generator", "MAX_TOKENS"))
|
61 |
-
TEMPERATURE = float(config.get("generator", "TEMPERATURE"))
|
62 |
-
|
63 |
-
# Set up authentication for the selected provider
|
64 |
-
auth_config = get_auth_config(PROVIDER)
|
65 |
-
|
66 |
-
def get_chat_model():
|
67 |
-
"""Initialize the appropriate LangChain chat model based on provider"""
|
68 |
-
common_params = {
|
69 |
-
"temperature": TEMPERATURE,
|
70 |
-
"max_tokens": MAX_TOKENS,
|
71 |
-
}
|
72 |
-
|
73 |
-
if PROVIDER == "openai":
|
74 |
-
return ChatOpenAI(
|
75 |
-
model=MODEL,
|
76 |
-
openai_api_key=auth_config["api_key"],
|
77 |
-
**common_params
|
78 |
-
)
|
79 |
-
elif PROVIDER == "anthropic":
|
80 |
-
return ChatAnthropic(
|
81 |
-
model=MODEL,
|
82 |
-
anthropic_api_key=auth_config["api_key"],
|
83 |
-
**common_params
|
84 |
-
)
|
85 |
-
elif PROVIDER == "cohere":
|
86 |
-
return ChatCohere(
|
87 |
-
model=MODEL,
|
88 |
-
cohere_api_key=auth_config["api_key"],
|
89 |
-
**common_params
|
90 |
-
)
|
91 |
-
elif PROVIDER == "huggingface":
|
92 |
-
# Initialize HuggingFaceEndpoint with explicit parameters
|
93 |
-
llm = HuggingFaceEndpoint(
|
94 |
-
repo_id=MODEL,
|
95 |
-
huggingfacehub_api_token=auth_config["api_key"],
|
96 |
-
task="text-generation",
|
97 |
-
temperature=TEMPERATURE,
|
98 |
-
max_new_tokens=MAX_TOKENS
|
99 |
-
)
|
100 |
-
return ChatHuggingFace(llm=llm)
|
101 |
-
else:
|
102 |
-
raise ValueError(f"Unsupported provider: {PROVIDER}")
|
103 |
-
|
104 |
-
# Initialize provider-agnostic chat model
|
105 |
-
chat_model = get_chat_model()
|
106 |
-
|
107 |
-
# ---------------------------------------------------------------------
|
108 |
-
# Core generation function for both Gradio UI and MCP
|
109 |
-
# ---------------------------------------------------------------------
|
110 |
-
async def _call_llm(messages: list) -> str:
|
111 |
-
"""
|
112 |
-
Provider-agnostic LLM call using LangChain.
|
113 |
-
|
114 |
-
Args:
|
115 |
-
messages: List of LangChain message objects
|
116 |
-
|
117 |
-
Returns:
|
118 |
-
Generated response content as string
|
119 |
-
"""
|
120 |
-
try:
|
121 |
-
# Use async invoke for better performance
|
122 |
-
response = await chat_model.ainvoke(messages)
|
123 |
-
return response.content.strip()
|
124 |
-
except Exception as e:
|
125 |
-
logging.exception(f"LLM generation failed with provider '{PROVIDER}' and model '{MODEL}': {e}")
|
126 |
-
raise
|
127 |
-
|
128 |
-
def build_messages(question: str, context: str) -> list:
|
129 |
-
"""
|
130 |
-
Build messages in LangChain format.
|
131 |
-
|
132 |
-
Args:
|
133 |
-
question: The user's question
|
134 |
-
context: The relevant context for answering
|
135 |
-
|
136 |
-
Returns:
|
137 |
-
List of LangChain message objects
|
138 |
-
"""
|
139 |
-
system_content = (
|
140 |
-
"You are an expert assistant. Answer the USER question using only the "
|
141 |
-
"CONTEXT provided. If the context is insufficient say 'I don't know.'"
|
142 |
-
)
|
143 |
-
|
144 |
-
user_content = f"### CONTEXT\n{context}\n\n### USER QUESTION\n{question}"
|
145 |
-
|
146 |
-
return [
|
147 |
-
SystemMessage(content=system_content),
|
148 |
-
HumanMessage(content=user_content)
|
149 |
-
]
|
150 |
-
|
151 |
-
|
152 |
-
async def rag_generate(query: str, context: str) -> str:
|
153 |
-
"""
|
154 |
-
Generate an answer to a query using provided context through RAG.
|
155 |
-
|
156 |
-
This function takes a user query and relevant context, then uses a language model
|
157 |
-
to generate a comprehensive answer based on the provided information.
|
158 |
-
|
159 |
-
Args:
|
160 |
-
query (str): The user's question or query
|
161 |
-
context (str): The relevant context/documents to use for answering
|
162 |
-
|
163 |
-
Returns:
|
164 |
-
str: The generated answer based on the query and context
|
165 |
-
"""
|
166 |
-
if not query.strip():
|
167 |
-
return "Error: Query cannot be empty"
|
168 |
-
|
169 |
-
if not context.strip():
|
170 |
-
return "Error: Context cannot be empty"
|
171 |
-
|
172 |
-
try:
|
173 |
-
messages = build_messages(query, context)
|
174 |
-
answer = await _call_llm(messages)
|
175 |
-
return answer
|
176 |
-
except Exception as e:
|
177 |
-
logging.exception("Generation failed")
|
178 |
-
return f"Error: {str(e)}"
|
|
|
1 |
+
import os
|
2 |
import configparser
|
3 |
import logging
|
4 |
from dotenv import load_dotenv
|
5 |
|
6 |
+
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Local .env file
|
9 |
load_dotenv()
|
|
|
25 |
# ---------------------------------------------------------------------
|
26 |
# Provider-agnostic authentication and configuration
|
27 |
# ---------------------------------------------------------------------
|
28 |
+
def get_auth(provider: str) -> dict:
|
29 |
"""Get authentication configuration for different providers"""
|
30 |
auth_configs = {
|
31 |
"openai": {"api_key": os.getenv("OPENAI_API_KEY")},
|
|
|
44 |
raise RuntimeError(f"Missing API key for provider '{provider}'. Please set the appropriate environment variable.")
|
45 |
|
46 |
return auth_config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|